YOMEDIA
NONE
  • Câu hỏi:

    Cho tứ diện ABCD có BCD là tam giác đều cạnh bằng a, AB vuông góc với (BCD) và AB = 2a. Tang của góc giữa AC và mặt phẳng (ABD) bằng:

    • A. \(\sqrt 5 \)
    • B. 1
    • C. Không xác định.
    • D. \(\dfrac{{\sqrt {51} }}{{17}}\).

    Lời giải tham khảo:

    Đáp án đúng: D

    Lấy M là chân đường cao từ C kẻ xuống BD. Ta có

    \(\left\{ \begin{array}{l}CM \bot BD\\CM \bot AB(\,AB \bot (BCD))\end{array} \right.\,\, \Rightarrow CM \bot \left( {ABD} \right)\)

    Suy ra hình chiếu vuông góc của C xuống (ABD) là M.

    \(\left( {AC,(ABD)} \right) = \left( {AC,AM} \right) = \widehat {MAC}\)

    Xét tam giác AMC vuông tại M ( do có \(MC \bot (ABD)\, \Rightarrow MC \bot AM\) ), từ đó\(\begin{array}{l}MC = \dfrac{{a\sqrt 3 }}{2},\,AC = \sqrt {4{a^2} + {a^2}}  = a\sqrt 5 ,\\AM = \sqrt {4{a^2} + \dfrac{{{a^2}}}{4}}  = \dfrac{{a\sqrt {17} }}{2}\\ \Rightarrow \,\,\tan \widehat {MAC} = \dfrac{{MC}}{{AM}} = \dfrac{{\sqrt 3 }}{{\sqrt {17} }} = \dfrac{{\sqrt {51} }}{{17}}\end{array}\).

    ATNETWORK

Mã câu hỏi: 232291

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON