YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chóp S. ABC có đáy là tam giác đều cạnh a, \(SA \bot (ABC)\,,SA = \dfrac{a}{2}\).Từ A kẻ \(AH \bot SM\) với M là trung điểm của của BC. Khi dđó góc giữa hai vec tơ \(\overrightarrow {SA} \,,\overrightarrow {AH} \) bằng:

    • A. 40o
    • B. 45o
    • C. 90o
    • D. 150o

    Lời giải tham khảo:

    Đáp án đúng: D

    Ta có \((\widehat {\overrightarrow {SA} ,\overrightarrow {AH} }) = {180^0} - (\widehat {SA,AH}) = {180^0} - \widehat {SAH}\).

    Do tam giác ABC là tam giác đều cạnh a nên \(AM \bot BC\,\, \Rightarrow \,\,MA = \sqrt {{a^2} - {{\left( {\dfrac{a}{2}} \right)}^2}} = \dfrac{{a\sqrt 3 }}{2}\).

    Xát tam giác SAM có \(SA \bot AM\,\,(SA \bot \left( {ABC} \right)\) nên nó là tam giác vuông tại A.

    Suy ra \(\tan \widehat {ASM} = \dfrac{{AM}}{{SA}} = \sqrt 3 \,\, \Rightarrow \widehat {ASM} = {60^0}\).

    Trong tam giác SAH có \(\widehat {SAH} = {180^0} - \widehat {ASH} - \widehat {AHS} = {180^0} - {60^0} - {90^0} = {30^0}\).

    Vậy góc giữa hai vec tơ \(\overrightarrow {SA} ,\overrightarrow {AH} \) là 1800 – 300 = 1500.

    ATNETWORK

Mã câu hỏi: 232130

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON