YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AB = BC = a, AD = 2a. Biết \(SA = \sqrt3 a \) và SA vuông góc (ABCD). Gọi H là hình chiếu vuông góc của A trên (SBC) Tính khoảng cách d từ H đến mặt phẳng SCD

    • A. \( d = \frac{{3\sqrt {15} a}}{{60}}\)
    • B. \( d = \frac{{3\sqrt {30} a}}{{40}}\)
    • C. \( d = \frac{{3\sqrt {10} a}}{{20}}\)
    • D. \( d = \frac{{3\sqrt {50} a}}{{80}}\)

    Lời giải tham khảo:

    Đáp án đúng: B

    Kẻ \(AH⊥(SBC)⇒AH⊥SB\)

    Ta có \( d = \frac{{HS}}{{BS}}d(B,(SCD)) = \frac{{HS}}{{BS}}.\frac{{BI}}{{AI}}d(A,(SBC))\) mà \( \frac{{SH}}{{SB}} = \frac{{SH.SB}}{{S{B^2}}} = \frac{{S{A^2}}}{{S{B^2}}} = \frac{{3{a^2}}}{{4{a^2}}} = \frac{3}{4}\)

    Tam giác ADI có BClà đường trung bình nên \( \frac{{BI}}{{AI}} = \frac{1}{2}\)

    Vậy \( d = \frac{3}{8}d(A,(SCD)) = \frac{3}{8}d\left( {A,SC} \right) = \frac{3}{8}\frac{{SA.SC}}{{\sqrt {S{A^2} + S{C^2}} }} = \frac{3}{8}\frac{{a\sqrt 3 .a\sqrt 2 }}{{\sqrt {3{a^2} + 2{a^2}} }} = \frac{{3a\sqrt {30} }}{{40}}\)

    ATNETWORK

Mã câu hỏi: 225497

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON