YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số

    \(f(x) = \left\{ \begin{array}{l}
    \frac{{{x^2} - 3x + 2}}{{x - 1}},x > 1\\
    x - 1,x \le 1
    \end{array} \right.\)

    Khẳng định nào trong các khẳng định sau?

    • A. f(x) liên tục tại x=1
    • B.  f(x) có đạo hàm tại x-1
    • C. f(0) = -2
    • D. f(-2) =-3

    Lời giải tham khảo:

    Đáp án đúng: D

    \(\begin{array}{l}
    \mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} - 3x + 2}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\left( {x - 1} \right)\left( {x - 2} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 2} \right) =  - 1\\
    \mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {x - 1} \right) = 0 \ne  - 1
    \end{array}\)

    Suy ta hàm số không liên tục tại x = 1, do đó không có đạo hàm tại x = 1.

    Ta có f(0) = -1, f(-2) = -3.

    ATNETWORK

Mã câu hỏi: 46853

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON