YOMEDIA
NONE
  • Câu hỏi:

    Cho cấp số cộng (un) có các số hạng đều dương, số hạng đầu u1 = 1 và tổng của 100 số hạng đầu tiên bằng 14950. Tính giá trị của tổng \(S = \frac{1}{{{u_2}\sqrt {{u_1}} + {u_1}\sqrt {{u_2}} }} + \frac{1}{{{u_3}\sqrt {{u_2}} + {u_2}\sqrt {{u_3}} }} + ... + \frac{1}{{{u_{2018}}\sqrt {{u_{2017}}} + {u_{2017}}\sqrt {{u_{2018}}} }}\)

    • A. \(\frac{1}{3}\left( {1 - \frac{1}{{\sqrt {6052} }}} \right)\)
    • B. \(1 - \frac{1}{{\sqrt {6052} }}\)
    • C. 2018
    • D. 1

    Lời giải tham khảo:

    Đáp án đúng: A

    Gọi d là công sai của cấp số cộng. Khi đó:

    \({S_{100}} = 100{u_1} + \frac{{100.99}}{2}d \Leftrightarrow 100 + 4950d = 14950 \Leftrightarrow d = 3\)

    Do đó \({u_{2018}} = {u_1} + 2017d = 6052\).

    Ta có: 

    \(\frac{1}{{{u_{k + 1}}\sqrt {{u_k}} + {u_k}\sqrt {{u_{k + 1}}} }} = \frac{1}{{\sqrt {{u_k}} .\sqrt {{u_{k + 1}}} .\left( {\sqrt {{u_k}} + \sqrt {{u_{k + 1}}} } \right)}} = \frac{1}{d}.\frac{{\sqrt {{u_{k + 1}}} - \sqrt {{u_k}} }}{{\sqrt {{u_k}} .\sqrt {{u_{k + 1}}} }} = \frac{1}{d}.\left( {\frac{1}{{\sqrt {{u_k}} }} - \frac{1}{{\sqrt {{u_{k + 1}}} }}} \right)\)

    Do đó:

    \(S = \frac{1}{d}.\left( {\frac{1}{{\sqrt {{u_1}} }} - \frac{1}{{\sqrt {{u_2}} }}} \right) + \frac{1}{d}.\left( {\frac{1}{{\sqrt {{u_2}} }} - \frac{1}{{\sqrt {{u_3}} }}} \right) + ... + \frac{1}{d}.\left( {\frac{1}{{\sqrt {{u_{2017}}} }} - \frac{1}{{\sqrt {{u_{2018}}} }}} \right) = \frac{1}{d}.\left( {\frac{1}{{\sqrt {{u_1}} }} - \frac{1}{{\sqrt {{u_{2018}}} }}} \right)\)

    \( = \frac{1}{3}\left( {1 - \frac{1}{{\sqrt {6052} }}} \right)\)

    ATNETWORK

Mã câu hỏi: 221179

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON