-
Câu hỏi:
a) Cho dãy số \((u_n)\) biết \({u_1} = 12,\,\;\,\frac{{2{u_{n + 1}}}}{{{n^2} + 5n + 6}} = \frac{{{u_n} + {n^2} - n - 2}}{{{n^2} + n}}\) với \(n \ge 1.\) Tìm \(\lim \frac{{{u_n}}}{{2{n^2} + 1}}.\)
b) Cho ba số thực \(a, b, c\) thỏa mãn \({a^3} + {b^3} + {c^3} = 3abc + 32.\) Tìm giá trị nhỏ nhất của biểu thức \(P = \left( {{a^2} + {b^2} + {c^2}} \right)\left( {\left| {a - b} \right| + \left| {b - c} \right| + \left| {c - a} \right|} \right).\)
Lời giải tham khảo:
a) Ta có:
\(\begin{array}{l}
\frac{{2{u_{n + 1}}}}{{{n^2} + 5n + 6}} = \frac{{{u_n} + {n^2} - n - 2}}{{{n^2} + n}} \Leftrightarrow \frac{{2{u_{n + 1}}}}{{\left( {n + 2} \right)\left( {n + 3} \right)}} = \frac{{{u_n}}}{{n\left( {n + 1} \right)}} + \frac{{n - 2}}{n}\\
\Leftrightarrow \frac{{2{u_{n + 1}}}}{{\left( {n + 1} \right){{\left( {n + 2} \right)}^2}\left( {n + 3} \right)}} = \frac{{{u_n}}}{{n{{\left( {n + 1} \right)}^2}\left( {n + 2} \right)}} + \frac{{n - 2}}{{n\left( {n + 1} \right)\left( {n + 2} \right)}}\\
\Leftrightarrow \frac{{2{u_{n + 1}}}}{{\left( {n + 1} \right){{\left( {n + 2} \right)}^2}\left( {n + 3} \right)}} = \frac{{{u_n}}}{{n{{\left( {n + 1} \right)}^2}\left( {n + 2} \right)}} + \frac{2}{{\left( {n + 1} \right)\left( {n + 2} \right)}} - \frac{1}{{n\left( {n + 1} \right)}}\\
\Leftrightarrow \frac{{{u_{n + 1}}}}{{\left( {n + 1} \right){{\left( {n + 2} \right)}^2}\left( {n + 3} \right)}} - \frac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} = \frac{1}{2}\left[ {\frac{{{u_n}}}{{n{{\left( {n + 1} \right)}^2}\left( {n + 2} \right)}} - \frac{1}{{n\left( {n + 1} \right)}}} \right]\quad (*)
\end{array}\)Đặt \({v_n} = \frac{{{u_n}}}{{n{{\left( {n + 1} \right)}^2}\left( {n + 2} \right)}} - \frac{1}{{n\left( {n + 1} \right)}},\) từ (*) ta có \({v_{n + 1}} = \frac{1}{2}{v_n}\) nên \((v_n)\) là cấp số nhân có công bội \(q = \frac{1}{2},\;{v_1} = \frac{1}{2}\) suy ra \({v_n} = {v_1}{q^{n - 1}} = \frac{1}{{{2^n}}}\)
\( \Leftrightarrow \frac{{{u_n}}}{{n{{\left( {n + 1} \right)}^2}\left( {n + 2} \right)}} - \frac{1}{{n\left( {n + 1} \right)}} = \frac{1}{{{2^n}}} \Leftrightarrow {u_n} = \frac{{n{{\left( {n + 1} \right)}^2}\left( {n + 2} \right)}}{{{2^n}}} + \left( {{n^2} + 3n + 2} \right)\)
Khi đó
\(\lim \frac{{{u_n}}}{{2{n^2} + 1}} = \lim \frac{{\frac{{n{{\left( {n + 1} \right)}^2}\left( {n + 2} \right)}}{{{2^n}}} + \left( {{n^2} + 3n + 2} \right)}}{{2{n^2} + 1}} = \lim \left[ {\frac{{n{{\left( {n + 1} \right)}^2}\left( {n + 2} \right)}}{{{2^n}\left( {2{n^2} + 1} \right)}} + \frac{{{n^2} + 3n + 2}}{{2{n^2} + 1}}} \right]\)
Ta có: \({2^n} = C_n^0 + C_n^1 + C_n^2 + C_n^3 + ... + C_n^n > C_n^3 = \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{6}\)
Suy ra \(\lim \frac{{n{{\left( {n + 1} \right)}^2}\left( {n + 2} \right)}}{{{2^n}\left( {2{n^2} + 1} \right)}} = 0\) và \(\lim \frac{{{n^2} + 3n + 2}}{{2{n^2} + 1}} = \frac{1}{2}\)
Vậy \(\lim \frac{{{u_n}}}{{2{n^2} + 1}} = \frac{1}{2}\)
b) Ta có \({a^3} + {b^3} + {c^3} - 3abc = 32 \Leftrightarrow \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) = 32\,\,\left( * \right)\)
Đặt \(t = a + b + c,\) từ (*) suy ra $t = a + b + c > 0\)
\(\begin{array}{l}
\left( * \right) \Leftrightarrow \left( {a + b + c} \right)\left[ {3\left( {{a^2} + {b^2} + {c^2}} \right) - {{\left( {a + b + c} \right)}^2}} \right] = 64\\
\, \Leftrightarrow 3\left( {{a^2} + {b^2} + {c^2}} \right) = \frac{{64}}{{a + b + c}} + {\left( {a + b + c} \right)^2} = \frac{{64}}{t} + {t^2}
\end{array}\)Ta chứng minh \(\left| {a - b} \right| + \left| {b - c} \right| + \left| {c - a} \right| \ge \sqrt {2\left[ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {a - c} \right)}^2}} \right]} \,\,\,\left( {**} \right)\)
Thật vậy, vì vai trò \(a, b, c\) bình đẳng nên giả sử $a \ge b \ge c\)
\(\left| {a - b} \right| + \left| {b - c} \right| + \left| {c - a} \right| = \left( {a - b} \right) + \left( {b - c} \right) + \left( {a - c} \right) = 2\left( {a - c} \right)\)
Ta có \(\left( {**} \right) \Leftrightarrow 2\left( {a - c} \right) \ge \sqrt {2\left[ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {a - c} \right)}^2}} \right]} \,\,\,\)
\(\begin{array}{l}
\Leftrightarrow {\left( {a - c} \right)^2} \ge {\left( {a - b} \right)^2} + {\left( {b - c} \right)^2}\\
\Leftrightarrow {\left( {a - b + b - c} \right)^2} \ge {\left( {a - b} \right)^2} + {\left( {b - c} \right)^2}
\end{array}\)\( \Leftrightarrow 2\left( {a - b} \right)\left( {b - c} \right) \ge 0\) luôn đúng
Vì vậy
\(\left| {a - b} \right| + \left| {b - c} \right| + \left| {c - a} \right| \ge 2\sqrt {{a^2} + {b^2} + {c^2} - ab - bc - ca} = 2\sqrt {\frac{{32}}{{a + b + c}}} \,\, = \frac{{8\sqrt 2 }}{{\sqrt t }}\)
\(\begin{array}{l}
3P = 3\left( {{a^2} + {b^2} + {c^2}} \right)\left( {\left| {a - b} \right| + \left| {b - c} \right| + \left| {c - a} \right|} \right).\\
3P \ge \left( {\frac{{64}}{t} + {t^2}} \right)\frac{{8\sqrt 2 }}{{\sqrt t }} = 8\sqrt 2 \left( {\frac{{64}}{{t\sqrt t }} + t\sqrt t } \right) \ge 8\sqrt 2 .2\sqrt {\frac{{64}}{{t\sqrt t }}.t\sqrt t } = 128\sqrt 2
\end{array}\)Suy ra \(P \ge \frac{{128\sqrt 2 }}{3}\)
Vậy giá trị nhỏ nhất của biểu thức P là \(\frac{{128\sqrt 2 }}{3}\)
Đạt được khi \(\,a = \frac{{4 + 4\sqrt 2 }}{3},\,\,b = \,c = \frac{{4 - 2\sqrt 2 }}{3}\) và các hoán vị của \(a, b, c\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- a) Giải phương trình (cos 2x + 7cos x - sqrt 3 left( {sin 2x - 7sin x} ight) = 8.
- Gọi S là tập hợp tất cả các số tự nhiên gồm 4 chữ số đôi một khác nhau được chọn từ các số (1,,,2,
- Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật ABCD có AB = 2BC.
- Cho hình chóp S.ABCD có đáy ABCD là hình thang cân (AB // CD) nội tiếp đường tròn tâm O và \(\widehat {SBA} = \widehat {SCA} = {90^0}.\) Gọi M là trung điểm của cạnh SA
- a) Cho dãy số ((u_n)) biết ({u_1} = 12,,;,frac{{2{u_{n + 1}}}}{{{n^2} + 5n + 6}} = frac{{{u_n} + {n^2} - n - 2}}{{{n^2} + n}})