YOMEDIA
NONE

Bài tập 1.3 trang 157 SBT Toán 8 Tập 1

Giải bài 1.3 tr 157 sách BT Toán lớp 8 Tập 1

Cho hình vuông ABCD có AB = 3cm

Trên tia đối của tia BA lấy điểm K ao cho BK = 1cm

Trên tia đối của tia CB lấy điểm L ao cho CL = 1cm

Trên tia đối của tia DC lấy điểm M ao cho MD = 1cm

Trên tia đối của tia AD lấy điểm N ao cho NA = 1cm

Chứng minh KLMN là hình vuông

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Chứng minh bốn tam giác vuông \(MCL, LKB, KAN, NDM\) bằng nhau.

Khi đó suy ra: \(ML = LK = KN = NM\) và \( LK\) vuông góc với \(KN\)

Từ đó ta có \(KLMN\) là hình vuông.

Lời giải chi tiết

Xét ∆ ANK và ∆ BKL 

AN = BK (gt)

\(\widehat A = \widehat B = 90^\circ \)

AK = BL (vì AB = BC, BK = CL)

Do đó ∆ ANK = ∆ BKL (c.g.c)

⇒ NK = KL (1)

Xét ∆ BKL và ∆ CLM:

BK = CL (gt)

\(\widehat B = \widehat C = 90^\circ \)

BL = CM (vì BC = CD, CL = DM)

Do đó:  ∆ BKL = ∆ CLM (c.g.c)

⇒ KL = LM (2)

Xét ∆ CLM và ∆ DMN :

CL = DM (gt)

\(\widehat C = \widehat D = 90^\circ \)

CM = DN (vì CD = DA, DM = AN)

Do đó: ∆ CLM = ∆ DMN (c.g.c)

⇒ LM = MN (3)

Từ (1), (2) và (3) ⇒ NK = KL = LM = MN

Tứ giác MNKL là hình thoi

∆ ANK = ∆ BKL \( \Rightarrow \widehat {ANK} = \widehat {BKL}\)

Trong tam giác ANK có \(\widehat A = 1v \Rightarrow \widehat {ANK} + \widehat {AKN} = 90^\circ \)

\( \Rightarrow \widehat {BKL} + \widehat {AKN} = 90^\circ \)hay \(\widehat {NKL} = 90^\circ \)

Vậy tứ giác MNKL là hình vuông.

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 1.3 trang 157 SBT Toán 8 Tập 1 HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON