YOMEDIA
NONE

Bài 3.32 trang 72 SGK Toán 8 Kết nối tri thức tập 1 - KNTT

Bài 3.32 trang 72 SGK Toán 8 Kết nối tri thức tập 1

Chứng minh rằng các trung điểm của bốn cạnh trong một hình thoi là các đỉnh của một hình chữ nhật.

ATNETWORK

Hướng dẫn giải chi tiết Bài 3.32

Giả sử có hình thoi ABCD. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA.

Ta cần chứng minh EFGH là hình chữ nhật. Thật vậy:

Do ABCD là hình thoi nên AB = BC = CD = DA.

Do E, H lần lượt là trung điểm của AB, AD nên AH = DH = AE = BE.

Tam giác AHE có AH = AE nên là tam giác cân tại A, suy ra AHE^=AEH^ .

HAE^+AHE^+AEH^=180°

Suy ra AHE^=180°HAE^2 .

Tương tự, ta có tam giác DHG cân tại D nên DHG^=180°HDG^2

Mặt khác, do ABCD là hình thoi nên AB // CD, suy ra HAE^+HDG^=180°

Khi đó: AHE^+DHG^=180°HAE^2+180°HDG^2

=180°HAE^+180°HDG^2

=360°HAE^+HDG^2=360°180°2=90°

AHE^+DHG^+EHG^=180°

Suy ra EHG^=180°AHE^+DHG^=180°90°=90°

Chứng minh tương tự như trên ta cũng có HEF^=EFG^=FGH^=90°.

Tứ giác EFGH có bốn góc vuông nên là hình chữ nhật.

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài 3.32 trang 72 SGK Toán 8 Kết nối tri thức tập 1 - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON