Bài tập 3.24 trang 42 SBT Toán 8 Tập 1 Kết nối tri thức
Gọi O là giao điểm hai đường chéo của hình bình hành ABCD. Với mỗi tam giác OAB, OBC, OCD, ODA, xét giao điểm ba đường phân giác của tam giác đó. Tại sao bốn điểm vừa vẽ là bốn đỉnh của một hình thoi?
Hướng dẫn giải chi tiết Bài tập 3.24
Gọi P, Q lần lượt là giao điểm ba đường phân giác của tam giác OAB, OCD thì O, P, Q thẳng hàng trên đường phân giác của góc AOB .
Do ABCD là hình bình hành nên AB // CD, AD // BC
Suy ra (các cặp góc ở vị trí so le trong)
Mà DQ, BP lần lượt là tia phân giác của nên
Xét ∆OBP và ∆ODQ có:
; OB = OD; (đối đỉnh)
Do đó ∆OBP = ∆ODQ (g.c.g)
Suy ra OP = OQ, hay O là trung điểm của PQ
Gọi R, S lần lượt là giao điểm ba đường phân giác của tam giác OAD, OBC thì tương tự như trên, ta cũng chứng minh được O là trung điểm của RS và đường thẳng RS là đường phân giác của góc
Do góc AOB và góc AOD là hai góc kề bù nên hai đường phân giác PQ, RS vuông góc với nhau.
Tứ giác PSQR có hai đường chéo cắt nhau tại trung điểm của mỗi đường và vuông góc với nhau nên là hình thoi.
-- Mod Toán 8 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Bài 3.33 trang 72 SGK Toán 8 Kết nối tri thức tập 1 - KNTT
Bài tập 3.23 trang 42 SBT Toán 8 Tập 1 Kết nối tri thức - KNTT
Bài tập 3.25 trang 42 SBT Toán 8 Tập 1 Kết nối tri thức - KNTT
Bài tập 3.26 trang 42 SBT Toán 8 Tập 1 Kết nối tri thức - KNTT
Bài tập 3.27 trang 42 SBT Toán 8 Tập 1 Kết nối tri thức - KNTT