YOMEDIA
NONE

Bài tập 3.10 trang 50 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT

Bài tập 3.10 trang 50 SBT Toán 11 Tập 1 Kết nối tri thức

Thống kê số lần đi học muộn trong học kì của các bạn trong lớp, Nam thu được kết quả sau:

Tính các tứ phân vị của mẫu số liệu ghép nhóm và cho biết ý nghĩa của các kết quả thu được.

ATNETWORK

Hướng dẫn giải chi tiết Bài 3.10

Ta có bảng số liệu ghép nhóm:

Cỡ mẫu \(n = 40\).

- Tứ phân vị thứ nhất \({Q_1}\) là \(\frac{{{x_{10}} + {x_{11}}}}{2}\).

Do \({x_{10}},{x_{11}}\) đều thuộc nhóm \(\left[ {0;3} \right)\) nên nhóm này chứa \({Q_1}\).

Do đó, \(p = 1,{a_1} = 0,{m_1} = 23,{a_2} - {a_1} = 3\).

Suy ra: \({Q_1} = 0 + \frac{{\frac{{40}}{4} - 0}}{{23}}.3 = \frac{{30}}{{23}}\)

- Tứ phân vị thứ ba \({Q_3}\) là \(\frac{{{x_{30}} + {x_{31}}}}{2}\).

Do \({x_{30}},{x_{31}}\) đều thuộc nhóm \(\left[ {3;6} \right)\) nên nhóm này chứa \({Q_3}\).

Do đó, \(p = 2,{a_2} = 3,{m_2} = 8,{m_1} = 233,{a_3} - {a_2} = 3\).

Suy ra: \({Q_3} = 3 + \frac{{\frac{{3.40}}{4} - 23}}{8}.3 = 5,625\).

- Tứ phân vị \({Q_2}\) chính là trung vị \({M_e}\)

Nhóm chứa trung vị là \(\left[ {0;3} \right)\).

Trung vị là: \({M_e} = 0 + \frac{{\frac{{40}}{2} - 0}}{{23}}\left( {3 - 0} \right) = \frac{{60}}{{23}}\).

Vậy \({Q_2} = \frac{{60}}{{23}}\).

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 3.10 trang 50 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON