YOMEDIA
NONE

Hai điện tích điểm \({q_1} = {3.10^{ - 8}}C;{q_2} = - {2.10^{ - 8}}C\) đặt trong không khí tại hai điểm A và B cách nhau 8 cm. Đặt điện tích điểm \(q = {10^{ - 8}}C\) tại điểm M trên đường trung trực của đoạn thẳng AB và cách AB một khoảng 3 cm. Lấy k = 9.109 N.m2 /C2. Lực điện tổng hợp do q1 và q2 tác dụng lên q có độ lớn là?

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Điện tích q sẽ chịu hai lực tác dụng của q1 và q2 là:\(\overrightarrow {{F_1}} ;\overrightarrow {{F_2}} \)

    Lực tổng hợp tác dụng lên q là: \(\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}} \)

    Gọi\(\,\alpha  = \left( {\overrightarrow {{F_1}} ;\overrightarrow {{F_2}} } \right)\)

    Với: \(\left\{ \begin{array}{l}{F_1} = \dfrac{{k.\left| {{q_1}q} \right|}}{{A{M^2}}} = \dfrac{{{{9.10}^9}.\left| {{{3.10}^{ - 8}}{{.10}^{ - 8}}} \right|}}{{0,{{05}^2}}} = 1,{08.10^{ - 3}}N\\{F_2} = \dfrac{{k.\left| {{q_2}q} \right|}}{{B{M^2}}} = \dfrac{{{{9.10}^9}.\left| { - {{2.10}^{ - 8}}{{.10}^{ - 8}}} \right|}}{{0,{{05}^2}}} = 0,{72.10^{ - 3}}N\end{array} \right.\)

    Từ hình vẽ ta có:

    \(\sin AMH = \dfrac{4}{5} \Rightarrow \widehat {AMH} = 53,{13^0} \Rightarrow \alpha  = 180 - 2.\widehat {AMH} = 73,{74^0}\)

    \( \Rightarrow F = \sqrt {F_1^2 + F_2^2 + 2{F_1}{F_2}\cos \alpha }  = 1,{46.10^{ - 3}}N\)

      bởi Việt Long 10/03/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON