YOMEDIA
NONE

Có 3 điện tích điểm q1 = 15.10-9C; q2 = -12.10-9C; q3 = 7.10-9C đặt tại ba đỉnh của tam giác đều ABC, cạnh 10cm. Điện thế tại tâm O và H - chân đường cao từ A xuống BC do ba điện tích gây ra là?

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • - Điện thế tại O: \({V_0} = {V_{10}} + {V_{20}} + {V_{30}} = k\frac{{{q_1}}}{{OA}} + k\frac{{{q_2}}}{{OB}} + \frac{{{q_3}}}{{OC}}\)

    Ta có, tam giác ABC đều \( =  > OA = OB = OC = \frac{2}{3}\frac{{10\sqrt 3 }}{2} = \frac{{10}}{{\sqrt 3 }}cm = \frac{{0,1}}{{\sqrt 3 }}m\)

    \( \to {V_0} = \frac{k}{{OA}}({q_1} + {q_2} + {q_3}) = \frac{{{{9.10}^9}}}{{\frac{{0,1}}{{\sqrt 3 }}}}({15.10^{ - 9}} - {12.10^{ - 9}} + {7.10^{ - 9}}) = 1558,8(V)\)

    - Điện thế tại H do các điện tích điểm gây ra là: \({V_H} = {V_{1H}} + {V_{2H}} + {V_{3H}} = k\frac{{{q_1}}}{{AH}} + k\frac{{{q_2}}}{{BH}} + \frac{{{q_3}}}{{CH}}\)

    Ta có: \(\left\{ \begin{array}{l}AH = \frac{{10\sqrt 3 }}{2}cm = 0,05\sqrt 3 m\\HB = HC = 5cm = 0,05m\end{array} \right.\)

    \({V_H} = {9.10^9}(\frac{{{{15.10}^{ - 9}}}}{{0,05\sqrt 3 }} + \frac{{ - {{12.10}^{ - 9}}}}{{0,05}} + \frac{{{{7.10}^{ - 9}}}}{{0,05}}) = 658,8V\)

      bởi Tuấn Tú 10/03/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON