YOMEDIA
NONE

Từ điểm M tùy ý trong \(\Delta ABC\), các đường thẳng MA, MB,

Từ điểm M tùy ý trong \(\Delta ABC\), các đường thẳng MA, MB, MC lần lượt cắt BC, CA, AB tại A1,B1,C1. Chứng minh rằng \(\frac{MA_1}{AA_1}+\frac{MB_1}{BB_1}+\frac{MC_1}{CC_1}=1\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • A B C M A1 B1 C1 H K

    Gọi MK và AH lần lượt là đường cao của các tam giác MBC và tam giác ABC.

    Dễ thấy : AH // MK => \(\frac{MK}{AH}=\frac{MA_1}{AA_1}\) 

    Ta có : \(\frac{MA_1}{AA_1}=\frac{MK}{AH}=\frac{S_{MBC}}{S_{ABC}}\) (1) . Tương tự : \(\frac{MB_1}{BB_1}=\frac{S_{AMC}}{S_{ABC}}\left(2\right)\) ; \(\frac{MC_1}{CC_1}=\frac{S_{ABM}}{S_{ABC}}\left(3\right)\)

    Cộng (1) , (2) , (3) theo vế được : \(\frac{MA_1}{AA_1}+\frac{MB_1}{BB_1}+\frac{MC_1}{CC_1}=\frac{S_{MBC}+S_{MAC}+S_{MAB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)

    Vậy \(\frac{MA_1}{AA_1}+\frac{MB_1}{BB_1}+\frac{MC_1}{CC_1}=1\) (đpcm)

     

      bởi Nguyen Hien 08/06/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON