YOMEDIA
NONE

Tính số góc C và D?

Bài 1. Tứ giác ABCD có góc A= 120độ,B=100 đọ,C-D= 20đọ.Tính số góc C và D?

Bài 2. Cho hình thang ABCD (AB // CD). Gọi E và F theo thứ tự là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF.

a. CM: AK = KC.

b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF.

Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.

a. CM: Tứ giác ADME là hình bình hành.

b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?

c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?

d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ dài AM.

Bài 4: Cho hình bình hành ABCD có AD = 2AB, A= 60o. Gọi E và F lần lượt là trung điểm của BC và AD.

a. Chứng minh AE vuông góc BF.

b. Chứng minh tứ giác BFDC là hình thang cân.

c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.

d. Chứng minh M, E, D thẳng hàng.

Bài 5: Cho tam giác ABC vuông tại A có góc BAC = 60o, kẻ tia Ax song song với BC. Trên Ax lấy điểm D sao cho AD = DC.

a. Tính các góc BAD và DAC.

b. Chứng minh tứ giác ABCD là hình thang cân.

c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.

d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED

Bài 6: Cho hình bình hành ABCD cú AB = 2AD. Gọi E, F thứ tự là trung điểm của AB và CD.

a. Các tứ giác AEFD, AECF là hình gì? Vì sao?

b. gọi M là giao điểm của AF và DE, gọi N là giao điểm của BF và CE.

Chứng minh rằng tứ giác EMFN là hình chữ nhật.

c. Hình bình hành ABCD núi trờn cú thờm điều kiện gì thì EMFN là hình vuông?

Bài 7: cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M qua AB, E là giao điểm của MH và AB. Gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK và AC.

a. Xác định dạng của tứ giác AEMF, AMBH, AMCK

b. chứng minh rằng H đối xứng với K qua A.

c. Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?

Bài 9: Cho tam giác ABC vuông tại A, D là trung điểm của BC. Gọi M, N lần lượt là hình chiếu của điểm D trên cạnh AB, AC.

a. Chứng minh tứ giác ANDM là hình chữ nhật.

b. Gọi I, K lần lượt là điểm đối xứng của N, M qua D. Tứ giác MNKI là hình gì? Vì sao?

c. Kẻ đường cao AH của tam giác ABC (H thuộc BC). Tính số đo góc MHN.

Bài 10. Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi D là trung điểm của AB, E là điểm đối xứng với M qua D.

a. Chứng minh rằng điểm E đối xứng với điểm M qua AB.

b. Các tứ giác AEMC, AEBM là hình gì? Vì sao?

c. Cho BC = 4cm, tính chu vi tứ giác AEBM.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Bài 10.

    A B C D M E Do : Tam giác ABC vuông tại A có AM là trung tuyến

    => AM = MB

    => Tam giác AMB cân tại M

    Lại có : AD = BD

    => MD vuông góc với AB

    Mà : AD = BD

    => đpcm

    b) Xét tứ giác AEBM có :

    MD = ED ( gt)

    AD = BD ( gt)

    => Tứ giác AEBM là HBH

    => AE // CB

    => AE // CM ( 1)

    Xét tam giác ABC có :

    CM = MB ( gt)

    DA = DB ( gt)

    => MD là đường TB của tam giác ABC

    => MD // AC ( 2)

    Từ ( 1 ; 2) => AEMC là HBH

    c) Ta có : CB = \(\dfrac{BC}{2}=\dfrac{4}{2}=2cm\)

    Lại có : AM = \(\dfrac{BC}{2}=2cm\left(cmt\right)\)

    => CV tứ giác AEBM = 2.4 = 8cm

      bởi Duc Trinh Le 01/01/2020
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON