YOMEDIA
NONE

Tìm số dư trong phép chia Q=(x+3)(x+5)(x+7)(x+9)+2014 cho x^2+12x+32

Cho đa thức Q=(x+3)(x+5)(x+7)(x+9)+2014. Tìm số dư trong phép chia đa thức Q cho đa thức x2+12x+32.
________giúp mình với ạ__________

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • \(Q=\dfrac{\left[\left(x+3\right)\left(x+9\right)\right]\left[\left(x+5\right)\left(x+7\right)\right]+2014}{\left(x^2+12x+32\right)}\)

    \(Q=\dfrac{\left(x^2+12x+27\right)\left(x^2+12x+35\right)+2014}{\left(x^2+12x+32\right)}\)

    \(Q=\dfrac{\left(t-5\right)\left(t+3\right)+2014}{t}\)

    \(Q=\dfrac{\left(t^2-2t-15\right)+2014}{t}=t-2+\dfrac{1999}{t}\)

    Kết luận số dư là 1999

      bởi Thái Hiền Nguyễn Thị 06/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON