YOMEDIA
NONE

Đề thi học sinh giỏi lớp 9 cấp tỉnh của tỉnh Thái

Đề thi học sinh giỏi lớp 9 cấp tỉnh của tỉnh Thái Bình

Câu 1:

Cho x=\(\dfrac{\left(\sqrt{5}-1\right)\sqrt[3]{16+8\sqrt{5}}}{\sqrt[3]{10+6\sqrt{3}-\sqrt{3}}}\) Tính A=\(\left(77x^2+35x+646\right)^{2017}\)

Câu 2:

Cho các đa thức P(x) và Q(x) thỏa mãn P(x)=\(Q\left(x\right)+\left(x^2-x+1\right).Q\left(1-x\right)\)với mọi x thuộc R.Biết rằng các hệ số của P(x) là các số nguyên không âm và P(0)=0.Tính Q(2017)

Câu 3: Tìm nghiệm nguyên của Pt \(\left(2x-y-2\right)^2=7\left(x-2y-y^2-1\right)\)

Câu 4: giải pt, hot sau

1) \(\sqrt{3x-1}+\sqrt{x^2+17x+1}=x^2+3\)

2) \(\left\{{}\begin{matrix}x^3-3xy^2-x+1=x^2-2xy-y^2\\y^3-3x^2y+y-1=y^2-2xy-x^2\end{matrix}\right.\)

Câu 5: Cho tam giác đều ABC, M là điểm nằm trong tam giác. Gọi D,E,F thuộc AB,BC,AC sao cho MD//BC,ME//AC,MF//AB.Chứng minh rằng \(S_{ABC}\ge3S_{DEF}\)

Câu 6:Cho tam giác ABC nhọn nội tiếp (O) có AH=OA.E,F là chân đường cao hạ từ H đến AB,AC.Chứng minh rằng EF đi qua trung điểm của OA

Câu 6: Cho các số dương x,y,z sao cho \(\dfrac{12}{xy}+\dfrac{20}{yz}+\dfrac{15}{zx}\le1\)

Tìm max cúa P=\(\dfrac{3}{\sqrt{x^2+9}}+\dfrac{4}{\sqrt{y^2+16}}+\dfrac{5}{\sqrt{z^2+25}}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • 3) Phương trình tương đương

    \(\left(8x-4y-15\right)^2+7\left(4y+3\right)^2=112=49+7.9\)

    Xét các phương trình tìm được cặp nghiệm x=1;y=0

      bởi phạm thị thảo 29/03/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON