YOMEDIA
NONE

Đề cương toán hình (không có hình

Đề cương toán hình (không có hình học không gian) part 1

Bài 1. Cho △ABC vuông tại A (AB<AC), kẻ AH⊥BC

a. CM: △AHB ∼ △CAB

b. CM: CA2 =CH.CB

c. Biết AB=6cm; AC=8cm. Tính AH

d. Kẻ AD là tia phân giác của góc BAC, kẻ DK⊥AC. Tính DK.

Bài 2: Cho △ABC vuông tại A, có đường cao AH. Biết AB=9cm, AC=12cm.

a. Tính độ dài đoạn thẳng BC

b. CM: △ABC ∼△HAC

c. Gọi E,F là hình chiếu của H trên AB, AC. Chứng minh: AH2 =AF.AC

d. Tính diện tích △AEF.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • BÀI 1:

    A B C H D K

    a. Xét tam giác AHB và tam giác CAB có:

    góc B chung

    góc H = A= 90o

    Do đó: tam giác AHB~CAB (g.g)

    b. Xét tam giác ABC và tam giác HAC có:

    góc C chung

    góc A = H = 90o

    Do đó: tam giác ABC~HAC (g.g)

    => \(\dfrac{AC}{HC}=\dfrac{BC}{AC}\Rightarrow AC^2=CH.CB\)

    c.

    Tam giác ABC vuông tại A

    => BC2 = AB2 + AC2

    => BC2 = 122 + 162

    => BC = 20 (cm)

    Ta có: tam giác AHB~CAB

    => \(\dfrac{AH}{CA}=\dfrac{AB}{CB}\Rightarrow AH=\dfrac{AB.CA}{CB}=\dfrac{12.16}{20}=9,6cm\)

    c.

    Ta có AD là phân giác của góc BAC

    => \(\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{12}{16}=\dfrac{3}{4}\Rightarrow\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{20}{7}\Rightarrow DC=\dfrac{20.4}{7}=\dfrac{80}{7}cm\)

    Xét tam giác DCK và tam giác ACB có:

    góc C chung

    góc D = C = 90o

    Do đó: tam giác DCK~ACB(g.g)

    => \(\dfrac{DC}{AC}=\dfrac{DK}{AB}\Rightarrow DK=\dfrac{DC.AB}{AC}=\dfrac{\dfrac{80}{7}.12}{16}=\dfrac{60}{7}cm\)

      bởi Văn Ngọc Dương 18/01/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON