ADMICRO

Chứng minh tam giác có 3 cạnh thỏa a^3+b^3+c^3=3abc là tam giác đều

Cho a,b,c là 3 cạnh của 1 tam giác thỏa mãn a3+b3+c3=3abc. CMR tam giác đó là tam giác đều.

Theo dõi Vi phạm
ADSENSE

Trả lời (1)

 
 
 
  • Ta có:

    \(a^3+b^3+c^3=3abc\)

    \(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

    \(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b+c\right)+c^3=0\)

    \(\Leftrightarrow\left(a+b+c\right)^3-3ab\left(a+b+c\right)-3c\left(a+b\right)\left(a+b+c\right)=0\)

    \(\Leftrightarrow\left(a+b+c\right)^3-3\left(a+b+c\right)\left(ab+bc+ca\right)=0\)

    \(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ca-3ab-3ac-3bc\right)=0\)

    \(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

    Mà a,b,c \(>0\Rightarrow a+b+c>0\)

    Nên \(\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

    \(2\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

    \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

    => a-b=0

    b-c=0 => a=b=c => tam giác đó là tam giác đều

    c-a=0

      bởi Trương Mỹ Yên 26/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Mời gia nhập Biệt đội Ninja247

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
YOMEDIA

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

Các câu hỏi có liên quan

 

YOMEDIA
1=>1
Array
(
    [0] => Array
        (
            [banner_picture] => 4_1603079338.jpg
            [banner_picture2] => 
            [banner_picture3] => 
            [banner_picture4] => 
            [banner_picture5] => 
            [banner_link] => https://tracnghiem.net/de-kiem-tra/?utm_source=Hoc247&utm_medium=Banner&utm_campaign=PopupPC
            [banner_startdate] => 2020-10-19 00:00:00
            [banner_enddate] => 2020-10-31 23:59:00
            [banner_embed] => 
            [banner_date] => 
            [banner_time] => 
        )

)