YOMEDIA
NONE

Chứng minh: \(\dfrac{x^2}{y}+\dfrac{y^2}{x}\) lớn hơn hoặc bằng

Chứng minh: \(\dfrac{x^2}{y}+\dfrac{y^2}{x}\) lớn hơn hoặc bằng x+y với mọi x,y

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • ta có

    \(\dfrac{x^2}{y}+y=\dfrac{x^2+y^2}{y}\ge\dfrac{2xy}{y}=2x\) với mọi x,y

    tương tự ta đc

    \(\dfrac{y^2}{x}+x\ge2y\) với mọi x,y

    cộng vế với vế ta dc

    \(\dfrac{y^2}{x}+x+\dfrac{x^2}{y}+y\ge2x+2y\)

    <=>\(\dfrac{y^2}{x}+\dfrac{x^2}{y}+x+y\ge2\left(x+y\right)\)

    <=>\(\dfrac{y^2}{x}+\dfrac{x^2}{y}\ge x+y\) (đpcm)

      bởi Nguyễn Hoàng Mai Phương 17/02/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON