YOMEDIA
NONE

cho tam guacs ABC cân tại A các dường phân

cho tam guacs ABC cân tại A các dường phân giác BE, CF. Chứng minh rằng BFEC là hình thang cân có dáy nhỏ bằng cạnh bên

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • \(xét\:\Delta FBC\:và\:\Delta ECB\:có:\\ \widehat{FCB}=\widehat{ECB}\left(=\dfrac{\widehat{BCE}}{2}\right)\\ BC:\:cạnh\:chung\\ \widehat{FBC}=\widehat{ECB}\left(\Delta\:ABC\:cân\right)\\ do\:đó\Delta FBC=\Delta ECB\left(g-c-g\right)\\ \Rightarrow FB=EC\\ đồng\:thời\:AB=AC\:nên\:AF=AE\\ \Rightarrow\Delta AFE\:cân\:ở\:A\)

    \(\Delta AFE:\widehat{AFE}=\dfrac{180^0-\widehat{FAE}}{2}\\ \Delta ABC:\widehat{ABC}=\dfrac{180^0-\widehat{FAE}}{2}\\ \Rightarrow\widehat{AFE}=\widehat{ABC}\:nên\:FE\text{//}BC\\ đồng\:thời\:\widehat{ABC}=\widehat{ACB}\\ \Rightarrow tứ\:giác\:BFEC\:là\:hình\:thang\:cân\)

    \(\Delta FBE\:có\:\widehat{FBE}=\widehat{FEB}\left(vì\:FE\text{//}BC\:và\:\:\widehat{FBE}=\widehat{EBC}\right)\\ \Rightarrow\Delta FBE\: \:cân\:ở\:F\\ \Rightarrow FB=FE=EC\)

    \(vậy\:BFEC\:là\:hình\:thang\:cân\:có\:đáy\:bên\:bằng\:2\:cạnh\:bên\:\)

      bởi thanh tuyền đặng 15/07/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON