YOMEDIA
NONE

Cho hình thang ABCD ( AB// DC và góc A = 90 độ),

Cho hình thang ABCD ( AB// DC và góc A = 90 độ), AD=3cm, AB=4 cm. H là chân đường vuông góc kẻ từ A đến BD ( H thuộc BD)

a) Chứng minh tam giác BHA đồng dạng với tam giác BAD

b) Chứng minh AB^2 = BD. HB

c) Tính độ dài HB

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • a) Chứng minh \(\Delta\) BHA đồng dạng với \(\Delta\) BAD

    Xét \(\Delta\) BHA và \(\Delta\) BAD có:

    H=A=90o (gt)

    B là góc chung(gt)

    Do đó: tam giác BHA đồng dạng với tam giác BAD

    (g-g) (1)

    b) Chứng minh: AB2 = BD.HB:

    Ta có: tam giác BHA đồng dạng với tam giác BAD (theo(1))

    => \(\dfrac{AB}{BD}=\dfrac{BH}{AB}\Rightarrow AB^2=BH.BD\)

    c) Tính độ dài HB

    Ta có: Tam giác ABD vuông tại A (A= 90o)

    => BD2 = AB2 + AD2 (định lí Pitago)

    hay BD2 = 42 + 32 = 25

    => BD = \(\sqrt{25}=5\) (cm)

    Ta có: tam giác BHA đồng dạng với tam giác BAD (theo(1))

    => \(\dfrac{AB}{DB}=\dfrac{HB}{AB}hay\dfrac{4}{5}=\dfrac{HB}{4}\)

    => HB = \(\dfrac{4.4}{5}=3,2\) (cm)


    A B C D H 4 3

      bởi Trần thị lan Anh 13/05/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON