YOMEDIA
NONE

Cho a, b là hai số bất kì và x, y là hai số dương. Chứng minh

Cho a, b là hai số bất kì và x, y là hai số dương. Chứng minh rằng:

\(\frac{a^2}{x}+\frac{b^2}{y}>=\frac{\left(a+b\right)^2}{x+y}\)

HELPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Giả sử BĐT trên đúng
    Ta có \(\frac{a^2}{x}+\frac{b^2}{y}>=\frac{\left(a+b\right)^2}{x+y}\\ \Leftrightarrow\frac{a^2y+b^2x}{xy}\ge\frac{\left(a+b\right)^2}{x+y}\\ \Leftrightarrow\left(a^2y+b^2x\right)\left(x+y\right)\ge\left(a+b\right)^2xy\)

    Bạn nhân ra rồi thu gọn tất cả các hạng tử về vế trái rồi được hàng đẳng thức:

    \(\left(ay-bx\right)^2\ge0\) (luôn đúng)
    Vậy BĐT đúng

      bởi Ngô hoàng anh anh 09/04/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON