YOMEDIA
NONE

cho a,b>0 chứng minh: ab(a2+b2) \(\le\)

cho a,b>0

chứng minh: ab(a2+b2) \(\le\) \(\dfrac{\left(a+b\right)^4}{8}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    Thực hiện biến đổi tương đương:

    \(ab(a^2+b^2)\leq \frac{(a+b)^4}{8}\)

    \(\Leftrightarrow 8ab(a^2+b^2)\leq (a+b)^4\)

    \(\Leftrightarrow 8ab(a^2+b^2)\leq (a^2+b^2+2ab)^2\)

    \(\Leftrightarrow 8ab(a^2+b^2)\leq (a^2+b^2)^2+(2ab)^2+4ab(a^2+b^2)\)

    \(\Leftrightarrow (a^2+b^2)^2+(2ab)^2-4ab(a^2+b^2)\geq 0\)

    \(\Leftrightarrow (a^2+b^2-2ab)^2\geq 0\)

    \(\Leftrightarrow (a-b)^4\geq 0\) (luôn đúng với mọi số thực $a,b$)

    Do đó ta có đpcm.

    Dấu bằng xảy ra khi \(a=b\)

      bởi Nong thi tham Nông thị thắm 29/01/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON