YOMEDIA
NONE

Cho a , b > 0 . C/m:

Cho a , b > 0 . C/m:

\(\dfrac{a^3+b^3}{2}>\left(\dfrac{a+b}{2}\right)^3\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • \(\dfrac{a^3+b^3}{2}>\left(\dfrac{a+b}{2}\right)^3\)

    Bất đẳng thức cần chứng minh

    \(\Leftrightarrow4\left(a^3+b^3\right)>\left(a+b\right)^3\)

    \(\Leftrightarrow3a^3+3b^3\ge3a^2b+3ab^2\)

    Áp dụng BĐT cô - si ta có:

    \(a^3+a^3+b^3\ge3\sqrt[3]{a^3\cdot a^3\cdot b^3}=3a^2b\)

    Tương tự: \(a^3+b^3+b^3\ge3ab^2\)

    Cộng các vế 2 bđt trên ta được:

    \(3a^3+3b^2\ge3a^2b+3ab^2\)

    Vậy bđt ban đầu được chứng minh.

    Dấu ''='' xảy ra khi a = b

      bởi Lâm Thảo Linh 04/04/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON