YOMEDIA
NONE

cho 2>a,b,c>0. Chứng minh a(2-b),b(2-c),c(2-a) không thể

cho 2>a,b,c>0. Chứng minh a(2-b),b(2-c),c(2-a) không thể dồng thời lớn hơn 1. giúp mình đi mà

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Vì 2>a,b,c>0 => a(2-b); b(2-c); c(2-a) là các số thực dương.

    Áp dụng bất đẳng thức Cauchy cho 6 số, ta có:

    \(\dfrac{a+\left(2-b\right)+b+\left(2-c\right)+c+\left(2-a\right)}{6}\ge\)

    \(\sqrt[6]{a.\left(2-b\right).b.\left(2-c\right).c.\left(2-a\right)}\)

    \(\Rightarrow\dfrac{a+b+c-a-b-c+2+2+2}{6}\ge\sqrt[6]{a.\left(2-b\right).b.\left(2-c\right).c.\left(2-a\right)}\)

    \(\Rightarrow1\ge\sqrt[6]{a.\left(2-b\right).b.\left(2-c\right).c.\left(2-a\right)}\)

    \(\Rightarrow1^6\ge a.\left(2-b\right).b.\left(2-c\right).c.\left(2-a\right)\Rightarrow1\ge a.\left(2-b\right).b.\left(2-c\right).c.\left(2-a\right)\)

    => a(2-b); b(2-c); c(2-a) không đồng thời lớn hơn 1

    => đpcm

      bởi Nguyễn thảo 22/06/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON