YOMEDIA
NONE

BT1:Cho x,y>0. Chứng minh rằng:

BT1:Cho x,y>0. Chứng minh rằng: (3x+3y)(\(\dfrac{1}{2x+y}\)+\(\dfrac{1}{x+2y}\)) >= 4

BT2:Cho a,b,c>0. Chứng minh rằng:

a) \(\dfrac{1}{2a+b+c}\)+\(\dfrac{1}{a+2b+c}\)+\(\dfrac{1}{a+b+2c}\)=<4

b)\(\dfrac{a}{1+a^2}\)+\(\dfrac{b}{1+b^2}\)+\(\dfrac{c}{1+c^2}\)=<\(\dfrac{3}{2}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Bài 2:

    ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{4^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\)(theo BĐt cauchy-schwarz)

    \(\Rightarrow\dfrac{1}{a+b+c+d}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\)

    Áp dụng BĐT trên vào bài toán ta có:

    \(A=\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)\(A\le\dfrac{1}{16}.4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

    ......

    dấu = xảy ra khi a=b=c

    Bài 2:

    Áp dụng BĐT cauchy cho 2 số dương:

    \(a^2+1\ge2a\)

    \(\Leftrightarrow\dfrac{a}{a^2+1}\le\dfrac{a}{2a}=\dfrac{1}{2}\)

    thiết lập tương tự:\(\dfrac{b}{b^2+1}\le\dfrac{1}{2};\dfrac{c}{c^2+1}\le\dfrac{1}{2}\)

    cả 2 vế các BĐT đều dương ,cộng vế với vế,ta có dpcm

    dấu = xảy ra khi a=b=c=1

      bởi Lê Văn Nam 15/06/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON