YOMEDIA
NONE
  • Câu hỏi:

    Trong không gian cho tam giác ABC . Tìm M sao cho giá trị của biểu thức \(P=M A^{2}+M B^{2}+M C^{2}\) đạt giá trị nhỏ nhất. 

    • A. M là trọng tâm tam giác ABC 
    • B. M là tâm đường tròn ngoại tiếp tam giác ABC .
    • C. M là trực tâm tam giác ABC .
    • D. M là tâm đường tròn nội tiếp tam giác ABC.

    Lời giải tham khảo:

    Đáp án đúng: A

    Gọi G là trọng tâm tam giác ABC\(\Rightarrow\)cố định và GA \(\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}=\overrightarrow{0}\) .

    \(\begin{array}{l} P=(\overrightarrow{M G}+\overrightarrow{G A})^{2}+(\overrightarrow{M G}+\overrightarrow{G B})^{2}+(\overrightarrow{M G}+\overrightarrow{G C})^{2} \\ =3 M G^{2}+2 \overrightarrow{M G} \cdot(\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C})+G A^{2}+G B^{2}+G C^{2} \\ =3 M G^{2}+G A^{2}+G B^{2}+G C^{2} \geq G A^{2}+G B^{2}+G C^{2} \end{array}\)

    Dấu bằng xảy ra \(\Leftrightarrow M \equiv G\).

    Vậy \(P_{\min }=G A^{2}+G B^{2}+G C^{2} \text { với } M \equiv G\) là trọng tâm tam giác ABC.

    ATNETWORK

Mã câu hỏi: 226166

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON