-
Câu hỏi:
Tính giới hạn \(\lim \dfrac{{3 - 4{n^2}}}{{4{n^2} - 2}}\) bằng:
- A. \(1\)
- B. \( - 1\)
- C. \(0\)
- D. \(\dfrac{3}{4}\)
Lời giải tham khảo:
Đáp án đúng: B
\(\lim \dfrac{{3 - 4{n^2}}}{{4{n^2} - 2}} = \lim \dfrac{{\dfrac{3}{{{n^2}}} - 4}}{{4 - \dfrac{2}{{{n^2}}}}} = \dfrac{{ - 4}}{4} = - 1\).
Chọn B.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- \(\mathop {\lim }\limits_{x \to 3} \left( {\dfrac{{3{x^2}}}{{x - 3}}.\dfrac{{12x + 4}}{{2{x^3} - 6{x^2} + x - 3}}} \right)\) bằng:
- Trong các hàm số sau, hàm số nào không liên tục tại \(x = 0\)?
- Cho tứ diện \(ABCD\). Các điểm \(M,\,\,N\) lần lượt là trung điểm của \(AB,\,\,CD\). Lấy hai điểm \(P,\,\,Q\) lần lượt thuộc \(AD\) và \(BC\) sao cho \(\overrightarrow {PA} = m\overrightarrow {PD} \) và \(\overrightarrow {QB} = m\overrightarrow {QC} \) với \(m\) khác 1. Vectơ \(\overrightarrow {MP} \) bằng:
- Cho \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt[4]{{6{x^4} + 3x + 1}} - \sqrt {a{x^2} + 2} } \right)\). Có bao nhiêu giá trị của \(a\) để giới hạn đã cho bằng \(0\)?
- Cho hàm số \(y = \dfrac{{ - {x^2} + 2x - 3}}{{x - 2}}\). Đạo hàm \(y'\) của hàm số là biểu thức nào sau đây?
- Tính \(\mathop {\lim }\limits_{x \to + \infty } \left( {3{x^3} - 2x + 1} \right)\)?
- Cho hình chóp tứ giác đều có cạnh đáy bằng \(a\sqrt 2 \) và chiều cao bằng \(\dfrac{{a\sqrt 2 }}{2}\). Tính số đo của góc giữa mặt bên và đáy?
- Tính giới hạn \(\lim \dfrac{{3 - 4{n^2}}}{{4{n^2} - 2}}\) bằng:
- Tính \(\lim \dfrac{{7{x^3} - 3{x^5} - 11}}{{{x^5} + {x^3} - 3x}}\) bằng:
- Cho tứ diện \(ABCD\) có \(AB = CD\) và \(AB \bot CD\). Gọi \(I,\,\,J,\,\,E,\,\,F\) lần lượt là trung điểm của \(AC,\,\,BC,\,\,BD,\,\,AD\) . Góc \(\left( {IE;IF} \right)\) bằng:
- Cho hàm số \(y = 2{x^3} - 3x - 1\) có đồ thị là \(\left( C \right)\). Tiếp tuyến của đồ thị \(\left( C \right)\) vuông góc với đường thẳng \(x + 21y - 2 = 0\) có phương trình là:
- Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{{x^2} + 5x - 14}}{{x - 2}}\,\,khi\,\,x \ne 2\\2{m^2} + 1\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 2\end{array} \right.\). Tìm giá trị của \(m\) để hàm số \(f\left( x \right)\) liên tục tại điểm \({x_0} = 2\).
- \(\mathop {\lim }\limits_{x \to {4^ - }} \dfrac{{ - {x^2} - 3x - 1}}{{\left| {x - 4} \right|}}\) bằng:
- Cho hình lập phương \(ABCD.A'B'C'D'\). Tính cosin của góc giữa hai mặt phẳng \(\left( {BDA'} \right)\) và \(\left( {ABCD} \right)\).
- Cho hình chóp \(S.ABCD\) có đáy là hình thoi \(ABCD\) cạnh \(a\), \(\angle BAD = {60^0}\) và \(SA = SB = SD = \dfrac{{a\sqrt 3 }}{2}\). Khoảng cách từ \(S\) đến \(\left( {ABCD} \right)\) và độ dài \(SC\) theo thứ tự là:
- Tính \(\lim \left( {\sqrt[3]{{n + 2}} - \sqrt[3]{n}} \right)\).
- Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( { - 2;2} \right)\); \(f\left( 1 \right) = 0\) và \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = 0\). Tìm khẳng định sai?
- Tính giới hạn \(L = \mathop {\lim }\limits_{x \to {a^ + }} \left( {x - a} \right)\dfrac{{2017}}{{{x^2} - 2ax + {a^2}}}\).
- Cho tứ diện đều \(ABCD\) cạnh \(a\). Tính góc giữa hai đường thẳng \(IC\) và \(AC\), với \(I\) là trung điểm của \(AB\).
- Cho hàm số \(y = \dfrac{{{x^2} + \left( {3m - 2} \right)x + 1 - 2m}}{{x + 2}}\). Tìm các giá trị của \(m\) để \(y' \ge 0\) với mọi \(x\) thuộc tập xác định.
- Gọi \(M\) là trung điểm của \(AB\), tính tan của góc giữa \(\left( {SMC} \right)\) và \(\left( {ABC} \right)\).
- Diện tích thiết diện của \(\left( P \right)\) và hình chóp \(S.ABCD\) bằng:
- Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi, \(O\) là giao điểm của 2 đường chéo và \(SA = SC\). Các khẳng định sau, khẳng định nào đúng?
- Cho \(\mathop {\lim }\limits_{x \to + \infty } \dfrac{{ax + 3}}{{2 - 3x}} = 2\) với \(a\) là một số thựHãy tìm \(a\).
- Cho hàm số \(y = \dfrac{1}{{{x^2} - 1}}\). Khi đó \({y^{\left( 3 \right)}}\left( 2 \right)\) bằng:
- Cho biết hình chóp \(S.ABCD\) có đáy là hình vuông \(ABCD\) cạnh bằng \(a\) và các cạnh bên đều bằng \(a\).
- Cho hàm số \(y = {\left( {2{x^2} + 1} \right)^3}\), để \(y' \ge 0\) thì \(x\) nhận giá trị nào sau đây?
- Tính gần đúng \(\sqrt {3,99} \).
- Hàm số \(y = f\left( x \right) = \dfrac{2}{{\cot \left( {\pi x} \right)}}\) có \(f'\left( 3 \right)\) bằng:
- Tính \(\mathop {\lim }\limits_{x \to 1} \dfrac{{\sqrt {{x^2} + 3} - 3x + 1}}{{{x^2} - 1}}\).
- Cho cấp số cộng biết tổng 10 số hạng đầu bằng 85 và số hạng thứ 5 bằng 7. Tìm số hạng thứ 100.
- Cho \(y = \sin 2x - 2\cos x\). Giải phương trình \(y' = 0\).
- Tính: \(\mathop {\lim }\limits_{x \to - 1} \dfrac{{{x^3} + 2{x^2} - 5x - 6}}{{{x^2} - 2x - 3}}\).
- Tính: \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {4{x^2} + 1} - 3x}}{{x - 2}}\).
- Tính giới hạn sau \(\mathop {\lim }\limits_{x \to \,\,3} \dfrac{{\sqrt {5x - 6} .\sqrt[3]{{3x - 1}} - 2x}}{{{x^2} - x - 6}}\).
- Tìm giá trị của tham số \(a\) để hàm số sau liên tục tại \({x_0} = 1\)\(f(x) = \left\{ \begin{array}{l}\dfrac{{5{x^3} - 4x - 1}}{{{x^2} - 1}} & khi\,\,x > 1\\4ax + 5\,\,\,\, & khi\,\,x \le 1\end{array} \right.\).
- Giải phương trình: \(y = \sqrt {7{x^2} + 8x + 5} \).
- Cho hàm số \(f\left( x \right) = {x^3} - 3x + 1\) có đồ thị (C). Viết phương trình tiếp tuyến của (C) biết tiếp tuyến song song với đường thẳng \(d:{\rm{ }}y = 9x - 15\).
- Cho hàm số \(y = {x^2} - x + 1\). Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ \({x_0} = 1\) là:
- Trong bốn giới hạn sau đây, giới hạn nào là \( - 1\)?