YOMEDIA
NONE
  • Câu hỏi:

    Tìm m để các hàm số \(f(x) = \left\{ \begin{array}{l} \frac{{\sqrt {x + 1} - 1}}{x}{\rm{ \ khi \ }}x > 0\\ 2{x^2} + 3m + 1{\rm{ \ khi \ }}x \le 0 \end{array} \right.\) liên tục trên R.

    • A. m = 1
    • B. \(m = -\dfrac16\)
    • C. m = 2
    • D. m = 0

    Lời giải tham khảo:

    Đáp án đúng: B

    Với x > 0 ta có: \(f(x) = \frac{{\sqrt {x + 1} - 1}}{x}\) nên hàm số liên tục trên \(\left( {0; + \infty } \right)\).

    Với x < 0 ta có: \(f(x) = 2{x^2} + 3m + 1\) nên hàm số liên tục trên \(( - \infty ;0)\)

    Do đó hàm số liên tục trên R khi và chỉ khi hàm số liên tục tại x = 0

    Ta có: \(f(0) = 3m + 1\)

    \(\mathop {\lim }\limits_{x \to {0^ + }} f(x) = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\sqrt {x + 1} - 1}}{x} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{{\sqrt {x + 1} + 1}} = \frac{1}{2}\)

    \(\mathop {\lim }\limits_{x \to {0^ - }} f(x) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {2{x^2} + 3m + 1} \right) = 3m + 1\)

    Do đó hàm số liên tục tại \(x = 0 \Leftrightarrow 3m + 1 = \frac{1}{2} \Leftrightarrow m = - \frac{1}{6}\)

    ATNETWORK

Mã câu hỏi: 221387

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON