YOMEDIA
NONE
  • Câu hỏi:

    Cho dãy số (un) xác định bởi u1 = 1 và \({u_{n + 1}} = \sqrt {u_n^2 + 2} ,\forall n \in {N^*}\). Tổng \(S = u_1^2 + u_2^2 + u_3^2 + ... + u_{1001}^2\) bằng

    • A. 1002001
    • B. 1001001
    • C. 1001002
    • D. 1002002

    Lời giải tham khảo:

    Đáp án đúng: A

    Từ giả thiết \({u_{n + 1}} = \sqrt {u_n^2 + 2} \) ta có \(u_{n + 1}^2 = u_n^2 + 2\).

    Xét dãy số \({v_n} = u_n^2\) với \({v_n} = u_n^2\) ta có \({v_{n + 1}} = u_{_{n + 1}}^2 = u_n^2 + 2\) hay \({v_{n + 1}} = {v_n} + 2\)⇒ dãy số (vn) là một cấp số cộng với số hạng đầu \({v_1} = u_1^2 = 1\) và công sai d = 2.

    Do đó

    \(\begin{array}{l} S = u_1^2 + u_2^2 + u_3^2 + ... + u_{1001}^2\\ = {v_1} + {v_2} + {v_3} + ... + {v_{1001}}\\ = \frac{{1001\left[ {2.1 + \left( {1001 - 1} \right)2} \right]}}{2}\\ = 10002001 \end{array}\)

    ATNETWORK

Mã câu hỏi: 221513

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON