YOMEDIA
NONE
  • Câu hỏi:

    Lấy bốn điểm M, N, P, Q, K trong đó không có ba điểm nào thẳng hàng. Cứ qua hai điểm ta vẽ một đường thẳng. Số đường thẳng có thể vẽ được là bao nhiêu?

    • A. 3
    • B. 10
    • C. 12
    • D. 4

    Lời giải tham khảo:

    Đáp án đúng: B

    Từ 5 điểm M, N, P, Q, K trong đó không có ba điểm nào thẳng hàng ta có thể vẽ được các đường thẳng đi qua hai điểm bất kì như sau:

    + Với điểm M ta có thể nối với các điểm: N, P, Q, K để tạo thành 4 đường thẳng phân biệt.

    + Với điểm N ta có thể nối với các điểm: P, Q, K để tạo thành 3 đường thẳng phân biệt.

    + Với điểm P ta có thể nối với các điểm: Q, K để tạo thành 2 đường thẳng phân biệt.

    + Với điểm Q ta có thể nối với điểm K để tạo thành 1 đường thẳng .

    Vậy từ 5 điểm M, N, P, Q, K trong đó không có ba điểm nào thẳng hàng ta có thể vẽ được tất cả:

    4 + 3 + 2 + 1 = 10 đường thẳng phân biệt.

    ATNETWORK

Mã câu hỏi: 311113

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON