YOMEDIA
NONE
  • Câu hỏi:

    Một vật sáng phẳng AB có chiều cao H đặt vuông góc với trục chính của thấu kính và ở trước thấu kính. Khi di chuyển thấu kính giữa vật và màn, có hai vị trí cho ảnh rõ nét trên màn. Các ảnh trên màn có chiều cao lần lượt là h1 và h2. Khoảng cách giữa vật sáng và màn ảnh không đổi. Chiều cao H tính theo h1 và h2 là:

    • A. \(H=\sqrt{{{h}_{1}}+{{h}_{2}}}\)     
    • B. \(H=\sqrt{{{h}_{1}}{{h}_{2}}}\)
    • C. \(H=\frac{{{h}_{1}}}{{{h}_{2}}}\)                     
    • D. \(H=\frac{{{h}_{1}}}{{{h}_{1}}+{{h}_{2}}}\)

    Lời giải tham khảo:

    Đáp án đúng: B

    Công thức thấu kính: \(\frac{1}{f}=\frac{1}{d}+\frac{1}{d'}\Rightarrow d'=\frac{df}{d-f}\Rightarrow d+d'=\frac{{{d}^{2}}}{d-f}=L\Rightarrow d{}^{2}-dL+fL=0\)

    Do f không đổi nên có 2 vị trí thấu kính cho ảnh rõ nét trên màn nên d là nghiệm của phương trình bậc 2 trên

                \({{d}_{1}}=\frac{d+\sqrt{{{L}^{2}}-4fL}}{2};{{d}_{2}}=\frac{d-\sqrt{{{L}^{2}}-4fL}}{2}\)

    Ta có: \(\frac{{{h}_{1}}}{h}=\frac{{{d}_{1}}'}{{{d}_{1}}}=\frac{f}{{{d}_{1}}-f};\frac{{{h}_{2}}}{h}=\frac{{{d}_{2}}'}{{{d}_{2}}}=\frac{f}{{{d}_{2}}-f}\Rightarrow \frac{{{h}_{1}}{{h}_{2}}}{{{h}^{2}}}=1\Rightarrow h=\sqrt{{{h}_{1}}{{h}_{2}}}\)

    Chọn B

    ATNETWORK

Mã câu hỏi: 380531

Loại bài: Bài tập

Chủ đề :

Môn học: Vật lý

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON