-
Câu hỏi:
Một công nhân dự định làm 120 sản phẩm trong một thời gian dự định. Sau khi làm được 2 giờ với năng suất dự kiến, người đó đã cải tiến các thao tác hợp lý hơn nên đã tăng năng suất thêm 3 sản phẩm mỗi giờ và vì vậy người đó hoàn thành kế hoạch sớm hơn dự định 1 giờ 36 phút. Hãy tính năng suất dự kiến.
- A. 10
- B. 14
- C. 12
- D. 16
Lời giải tham khảo:
Đáp án đúng: C
Gọi năng suật dự định là x(0
Sản phẩm làm được sau 2 giờ là: 2x (sản phẩm).
Số sản phẩm còn lại là: 120−2x (sản phẩm)
Năng suất sau khi cải tiến là x+3 (sản phẩm/giờ)
Thời gian làm số sản phẩm còn lại là: \( \frac{{120 - 2x}}{{x + 3}}\) (giờ)
Do sau khi cải tiến người đó hoàn thành sớm hơn dự định 1 giờ 36 phút.
Đổi 1 giờ 36 phút bằng 1,6 giờ.
Theo bài ra có phương trình:
\( 2 + \frac{{120 - 2x}}{{x + 3}} + 1,6 = \frac{{120}}{x} \Rightarrow 1,6{x^2} + 10,8x - 360 = 0 \Leftrightarrow x = 12(n);x = \frac{{ - 75}}{4}(l)\) Vậy năng suất dự định của công nhân đó là 12 sản phẩm/giờ.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Nghiệm của phương trình \(2 x^{2}+3 x+1=0\) là?
- Nghiệm của phương trình \(x^{2}-6 x-16=0\) là
- Tìm nghiệm của phương trình \(\sqrt{2} x^{2}-2(\sqrt{3}-1) x-3 \sqrt{2}=0\) là?
- Tìm nghiệm của phương trình \(-x^{2}-7 x-13=0\) là?
- Tìm nghiệm của phương trình \(3 x^{2}-2 \sqrt{3} x-2=0\) là?
- Nghiệm của phương trình \(x^{2}-7 x-2=0\) là?
- Tìm nghiệm của phương trình \(2 x^{2}+5 x-3=0\) là?
- Tìm nghiệm của phương trình \(3 x^{2}+2 x+5=0\) là?
- Với giá trị nào của m thì hệ phương trình sau có nghiệm duy nhất \(\left\{ \begin{array}{l} x + y = 8\\ \frac{x}{y} + \frac{y}{x} = m \end{array} \right.\)
- Cho phương trình \(x^2 + (a + b + c) x + (ab + bc + ca) = 0\). Khẳng định nào sau đây là đúng?
- Cho phương trình \(x^2 + 4x + 2m + 1 = 0\) ( (m ) là tham số). Giải phương trình khi m=1
- Giá trị nào của m thì hệ phương trình sau có nghiệm duy nhất \(\left\{ \begin{array}{l} x + y = 8\\ \frac{x}{y} + \f
- Phương trình \(x^2 + (a + b + c) x + (ab + bc + ca) = 0\) với (a,b,c ) là ba cạnh của một tam giác.
- Hai nghiệm của phương trình là
- Phương trình \((m - 3)x^2 - 2(3m + 1)x + 9m - 1 = 0\) có nghiệm khi:
- Tìm các giá trị của m để phương trình \(mx^2 - 2(m - 1)x + m + 2 = 0\) có nghiệm
- Tìm u - v biết rằng u + v = 15,uv = 36 và u > v
- Phân tích đa thức \(A = 18x^2 + 23x + 5\) sau thành nhân tử.
- phương trình \((m - 2) )x^2 - (2m + 5)x + m + 7 = 0 ,(m \ne 2)\). Tìm \(x_1; x_2\) theo m.
- Hãy tính giá trị của biểu thức \( T = \frac{{x_1^2}}{{{x_1}}} + \frac{{x_2^2}}{{{x_2}}}\)
- Tính giá trị của biểu thức \(C=x_1^3+x_2^3\)
- Tính: \( P = {x_2}{(2x_1^2 - 38{x_1} + {x_1}{x_2} - 3)^2} + {x_1}{(2x_2^2 - 38{x_2} + {x_1}{x_2} - 3)^2} + 120\).
- Tính giá trị của biểu thức: \(N = \frac{1}{{{x_1} + 3}} + \frac{1}{{{x_2} + 3}}\)
- Tính hệ số c của phương trình x2 + 7x + 9 = 9 là?
- Phương trình \(\dfrac{{{x^2} + 8}}{{{x^2} - 4}} = \dfrac{3}{{x - 2}}\)
- Phương trình \(2{x^4} - 7{x^2} + 5 = 0\)
- Cho phương trình trùng phương \(a{x^4} + b{x^2} + c = 0\). Chọn câu đúng
- Giải phương trình (x - 1)(x - 2)(x - 3)(x - 4) = 24
- Cho phương trình \(\dfrac{{x - 2}}{{x + 3}} + 1 = \dfrac{{3x - 1}}{{x - 3}}\). Khẳng định nào sau đây là sai?
- Tính \(a^2 + b^2\). Biết a, b là hai nghiệm của phương trình \(\dfrac{{{t^2}}}{{t - 1}} + t = \dfrac{{2{t^2} + 5t}}{{t + 1}}\).
- Cho \(\dfrac{{2x - 1}}{x} + 3 = \dfrac{{x + 3}}{{2x - 1}}\). Khẳng định nào sau đây là đúng?
- Cho \(\dfrac{x}{{x - 2}} + \dfrac{{x + 3}}{{x - 1}} = 6\) có hai nghiệm a và b. Khẳng định nào sau đây là đúng?
- Hãy tính số quyển sách xưởng in được trong 1 ngày theo kế hoạch.
- Tính số sản phẩm mà đội phải làm trong 1 ngày theo kế hoạch.
- Nếu theo kế hoạch, mỗi giờ người công nhân phải làm bao nhiêu sản phẩm?
- Hỏi theo kế hoạch cần sản xuất mỗi ngày bao nhiêu sản phẩm.
- Hãy tính năng suất dự kiến.
- Tính chiều dài cạnh đáy thửa ruộng
- Tính chiều dài cạnh đáy thửa ruộng, biết rằng nếu tăng cạnh đáy lên 4m
- Cạnh góc vuông có độ dài nhỏ nhất của tam giác vuông đó là