YOMEDIA
NONE
  • Câu hỏi:

    Đội tuyển học sinh giỏi môn toán của trường THPT Kim Liên gồm có: \(5\) học sinh khối \(10\);  \(5\) học sinh khối \(11\); \(5\) học sinh khối \(12\). Chọn ngẫu nhiên \(10\) học sinh từ đội tuyển đi tham dự kì thi \(AMC\). Có bao nhiêu cách chọn được học sinh của cả ba khối và có nhiều nhất hai học sinh khối \(10\) ?

    • A. \(50\)       
    • B. (500\)    
    • C. \(501\)   
    • D.  \(502\)

    Lời giải tham khảo:

    Đáp án đúng: B

    TH1 : Đội tuyển gồm 1 học sinh khối 10 và 9 học sinh của 2 khối 11 và khối 12

    Số cách chọn là : \(C_5^1.C_{10}^9 = 50\) cách

    TH2 : Đội tuyển gồm 2 học sinh khối 10 và 8 học sinh của 2 khối 11 và khối 12

    Số cách chọn là : \(C_5^2.C_{10}^8 = 450\) cách

    Vậy có \(450 + 50 = 500\) cách chọn thỏa mãn yêu cầu đề bài.

    Chọn B

    ATNETWORK

Mã câu hỏi: 323158

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON