YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều và \(SC = a\sqrt 2 \). Gọi H là trung điểm của AB. Hình chiếu vuông góc của điểm S trên mặt phẳng (ABCD) là điểm?

    • A. A
    • B. B
    • C. C
    • D. H

    Lời giải tham khảo:

    Đáp án đúng: D

    Vì tam giác ABS đều nên SH là đường trung tuyến đồng thời là đường cao.

    Áp dụng định lí Pythagore vào tam giác SHB vuông tại H có:

    \(SH = \sqrt {S{B^2} - H{B^2}}  = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}}  = \frac{{a\sqrt 3 }}{2}\)

    Áp dụng định lí Pythagore vào tam giác CHB vuông tại B có:

    \(CH = \sqrt {B{C^2} + H{B^2}}  = \sqrt {{a^2} + {{\left( {\frac{a}{2}} \right)}^2}}  = \frac{{a\sqrt 5 }}{2}\)

    Ta có: \(S{H^2} + H{C^2} = S{C^2}\left( {do\;{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2} + {{\left( {\frac{{a\sqrt 5 }}{2}} \right)}^2} = {{\left( {a\sqrt 2 } \right)}^2}} \right)\) nên tam giác SHC vuông tại H.

    Suy ra: \(SH \bot HC\)

    Lại có: \(SH \bot AB\), HC và AB cắt nhau tại H và nằm trong mặt phẳng (ABCD).

    Do đó, \(SH \bot \left( {ABCD} \right)\). Vậy H là hình chiếu vuông góc của S trên mặt phẳng (ABCD).

    Đáp án D.

    ATNETWORK

Mã câu hỏi: 468546

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON