-
Câu hỏi:
Cho dãy số có giới hạn (un ) xác định bởi \(\left\{\begin{array}{l} u_{n}=\frac{1}{2} \\ u_{n+1}=\frac{1}{2-u_{n}}, n \geq 1 \end{array}\right.\). Tính \(\lim u_{n}\)
- A. -1
- B. 0
- C. 1
- D. 2
Lời giải tham khảo:
Đáp án đúng: C
Giả sử \(\lim u_{n}=a \text { thì ta có }\)
\(a=\lim u_{n+1}=\lim \frac{1}{2-u_{n}}=\frac{1}{2-a} \Leftrightarrow\left\{\begin{array}{l} a \neq 2 \\ a(2-a)=1 \end{array} \Leftrightarrow\left\{\begin{array}{l} a \neq 2 \\ a^{2}-2 a+1=0 \end{array} \Leftrightarrow a=1\right.\right.\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Cho hàm số \(f(x)=\left\{\begin{array}{ll} \frac{x^{2}-3 x+2}{\sqrt{x-1}}+2 & \text { khi } x>1 \\ 3 x^{2}+x-1 & \text { khi } x \leq 1 \end{array}\right.\) . Khẳng định nào sau đây đúng nhất
- Cho hàm số \(f(x)=\left\{\begin{array}{ll} \frac{\sqrt{x}-2}{x-4} & \text { khi } x \neq 4 \\ \frac{1}{4} & \text { khi } x=4 \end{array}\right.\). Khẳng định nào sau đây đúng?
- Cho hàm số \(f(x)=\left\{\begin{array}{ll} (x+1)^{2} & , x>1 \\ x^{2}+3 & , x
- Cho hàm số \(f(x)=\left\{\begin{array}{ll} \frac{\sin 5 x}{5 x} & x \neq 0 \\ a+2 & x=0 \end{array}\right.\). Tìm a để \(f(x)\) liên tục tại x=0
- Giới hạn dãy số \(\left(u_{n}\right) \text { với } u_{n}=\frac{3 n-n^{4}}{4 n-5}\) là:
- Tìm giới hạn \(E=\lim \limits_{x \rightarrow+\infty}\left(\sqrt[4]{16 x^{4}+3 x+1}-\sqrt{4 x^{2}+2}\right)\)
- Tìm giới hạn \(D=\lim\limits _{x \rightarrow+\infty}\left(\sqrt[3]{8 x^{3}+2 x}-2 x\right)\)
- Tìm giới hạn \(C=\lim \limits_{x \rightarrow \pm \infty}\left(\sqrt{x^{2}-x+1}-\sqrt{x^{2}+x+1}\right)\)
- Tìm giới hạn \(A=\lim\limits _{x \rightarrow+\infty}\left(\sqrt{x^{2}-x+1}-x\right)\)
- Tìm giới hạn \(C=\lim \limits_{x \rightarrow+\infty}\left[\sqrt[n]{\left(x+a_{1}\right)\left(x+a_{2}\right) \ldots\left(x+a_{n}\right)}-x\right]:\)
- Cho dãy số có giới hạn (un ) xác định bởi \(\left\{\begin{array}{l} u_{1}=2 \\ u_{n+1}=\frac{u_{n}+1}{2}, n \geq 1 \end{array}\right.\). Tính \(\lim u_{n}\)
- Cho dãy số có giới hạn (un ) xác định bởi \(\left\{\begin{array}{l} u_{n}=\frac{1}{2} \\ u_{n+1}=\frac{1}{2-u_{n}}, n \geq 1 \end{array}\right.\). Tính \(\lim u_{n}\)
- Giá trị của giới hạn \(\lim \frac{1^{2}+2^{2}+\ldots+n^{2}}{n\left(n^{2}+1\right)}\) bằng?
- Giá trị của giới hạn \(\lim \left(\frac{1}{1.3}+\frac{1}{3.5}+\ldots+\frac{1}{(2 n-1)(2 n+1)}\right)\) bằng?
- Giá trị của giới hạn \(\lim \left[\frac{1}{1.4}+\frac{1}{2.5}+\ldots \ldots+\frac{1}{n(n+3)}\right]\) là?
- Cấp số nhân (un) có Tìm u1, biết rằng .
- Xác định x dương để 2x - 3; x; x + 3 lập thành cấp số nhân.
- Viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Tổng các số hạng của cấp số nhân đó là
- Cho 3 số a, b, c theo thứ tự đó tạo thành cấp số nhân với công bội khác 1. Biết cũng theo thứ tự đó chúng lần lượt là số hạng thứ nhất, thứ tư và thứ tám của một cấp số cộng với công sai là s khác 0. Tính \(\frac a s\).
- Cho một cấp số nhân có các số hạng đều không âm thỏa mãn u2 = 6, u4 = 24. Tính tổng của 12 số hạng đầu tiên của cấp số nhân đó.
- Xác định a để 3 số \(1+3 a ; a^{2}+5 ; 1-a\) theo thứ tự lập thành một cấp số cộng?
- Xác định x để 3 số \(1+2 x ; 2 x^{2}-1 ;-2 x\) theo thứ tự lập thành một cấp số cộng?
- Xác định x để 3 số \(1-x ; x^{2} ; 1+x\) theo thứ tự lập thành một cấp số cộng?
- Cho a, b, c theo thứ tự lập thành cấp số cộng, ba số nào dưới đây cũng lập thành một cấp số cộng ?
- Cho a, b, c theo thứ tự lập thành cấp số cộng, đẳng thức nào sau đây là đúng?
- Cho hình chóp S. ABCD có đáy ABCD là hbh
- Cho hình chóp S ABCD . có đáy là hình bình hành tâm O. Gọi G là điểm thỏa mãn:\(\overrightarrow{G S}+\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}+\overrightarrow{G D}=\overrightarrow{0}\). Trong các khẳng định sau, khẳng định nào đúng?
- Cho lăng trụ tg \(A B C \cdot A^{\prime} B^{\prime} C^{\prime} \text { có } \overrightarrow{A A^{\prime}}=\vec{a}, \overrightarrow{A B
- Hình tứ diện ABCD có trọng tâm là G . Mệnh đề nào sau đây là sai?
- Cho tứ diện ABCD . Gọi M và N lần lượt là trung điểm của AB và CD
- tứ diện ABCD có hai mặt ABC và ABD là các tam giác đều. Góc giữa AB và CD là?
- Cho tứ diện ABCD có trọng tâm G. Chọn khẳng định đúng
- Cho tứ diện ABCD có AB = AC = AD và \(\widehat {BAC} = \widehat {BAD} = {60^0},\,\widehat {CAD} = {90^0}\). Gọi I và J lần lượt là trung điểm của AB và CD. Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {IJ} \)?
- Cho hình chóp S.ABC có \(SA = SB = SC\) và \(\widehat {ASB} = \widehat {BSC} = \widehat {CSA}\). Hãy xác định góc giữa cặp vectơ \(\overrightarrow {SB} \) và \(\overrightarrow {AC} \)?
- Cho hình chóp S.ABC có cạnh \(S A \perp(A B C)\) và đáy ABC là tam giác cân ở C . Gọi H và K lần lượt là trung điểm của AB và SB . Khẳng định nào sau đây sai?
- Cho hình chóp .ABCD có đáy ABCD là hình chữ nhật, \(S A \perp(A B C D\).Gọi AE; AF lần lượt là các đường cao của tam giác SAB và tam giác SAD. Chọn khẳng định đúng trong các khẳng định sau ?
- Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O . Biết \(S A=S C \text { và } S B=S D\) . Khẳng định nào sau đây sai?
- Câu đúng là đáp án
- Mệnh đề sau, mệnh đề nào đúng?
- Trong các mệnh đề sau, MĐ nào đúng?