YOMEDIA
NONE

Luyện tập 1 trang 110 SGK Toán 8 Tập 1 Cánh diều - CD

Luyện tập 1 trang 110 SGK Toán 8 Tập 1 Cánh diều

Cho hình chữ nhật ABCD có hai đường chéo AC và BD cắt nhau tại O. Gọi M, N lần lượt là hình chiếu của O trên AB, BC. Chứng minh: \(MN = \dfrac{1}{2}AC\)?

ATNETWORK

Hướng dẫn giải chi tiết Luyện tập 1

Do ABCD là hình chữ nhật, O là giao điểm của AC và BD

Suy ra OA = OB = OC = OD.

Xét tứ giác MBNO có:

\(\widehat M = \widehat N = {90^0}\) (Do M, N lần lượt là hình chiếu của O trên AB, BC)

\(\widehat B = {90^0}\)

nên MBNO là hình chữ nhật.

Suy ra MN = BO (tính chất hai đường chéo của hình chữ nhật)

\( MN = \dfrac{1}{2}AC\) (do \(BO = AO = OC = \dfrac{1}{2}AC\))

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Luyện tập 1 trang 110 SGK Toán 8 Tập 1 Cánh diều - CD HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON