YOMEDIA
NONE

Bài tập 6.3 trang 165 SBT Toán 8 Tập 1

Giải bài 6.3 tr 165 sách BT Toán lớp 8 Tập 1

Bạn Giang đã vẽ một đa giác ABCDEFGHI như ở hình bs. 26.

Tính diện tích của đa giác đó, biết rằng : KH song song với BC (K thuộc EF); BC song song với GF; CF song song với BG; BG vuông góc với GF; CK song song với DE; CD song song với FE; KE = DE và KE vuông góc với DE; I là trung điểm của BH, AI = IH và AI vuông góc với IH; HK = 11cm, CF = 6cm. HK cắt CF tại J và JK = 3 (cm), JF = 2cm. BG cắt HK tại M và HM = 2cm.

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Chia hình đa giác đã cho thành các hình vuông, hình thang và hình tam giác. Áp dụng công thức tính diện tích hình vuông, hình thang và hình tam giác để tính.

Áp dụng công thức:

Diện tích hình tam giác bằng nửa tích cạnh và chiều cao tương ứng: \(S=\dfrac{1}{2}ab\)

Diện tích hình thang bằng nửa tích hai đáy với chiều cao: \(S=\dfrac{a+b}{2}.h\)

Diện tích hình vuông cạnh \(a\) bằng \(a^2\) 

Lời giải chi tiết

Chia đa giác đó thành hình vuông \(CDEK,\) hình thang \(KFGH,\) hình thang \(BCKH\) và tam giác vuông \(AIB\)

Ta có: \(MJ = KH – KJ – MH\) \(= 11 – 2 – 3 = 6\,(cm)\)

\(⇒ BC = GF = MJ = 6\, (cm)\)

\(CJ = 4 \,(cm)\)

\(\eqalign{ {S_{KFGH}} = {{HK + GF} \over 2}.FJ}\) \(= \eqalign{{11 + 6} \over 2}.2 = 17(c{m^2})\)

\(\eqalign{ {S_{BCKH}} = {{BC + KH} \over 2}.CJ}\) \(= \eqalign {{11 + 6} \over 2}.4 = 34(c{m^2}) \)

Trong tam giác vuông \(CJK\) có \(\widehat J = 90^\circ \). Theo định lý Pi-ta-go ta có:

\(C{K^2} = C{J^2} + J{K^2} = 16 + 9 = 25 \\\Rightarrow CK = 5\) \((cm)\)

\({S_{CDEK}} = C{K^2} = {5^2} = 25\) \((cm^2)\)

Trong tam giác vuông \(BMH\) có \(\widehat M = 90^\circ \). Theo định lý Pi-ta-go ta có:

\(B{H^2} = B{M^2} + H{M^2}\)

mà \(BM = CJ = 4\,(cm)\) (đường cao hình thang \(BCKH\))

\(\eqalign{  &  \Rightarrow B{H^2} = {4^2} + {2^2} = 20  }\) \(\Rightarrow \eqalign{IB = {{BH} \over 2} \Rightarrow I{B^2} = {{B{H^2}} \over 4}}\) \(\eqalign{= {{20} \over 4} = 5  }\)

Suy ra \({ IB = \sqrt 5 \,(cm) } \)

\(∆ AIB\) vuông cân tại \(I\) (vì \(AI = IH = IB\))

\({S_{AIB}} = \eqalign{1 \over 2}AI.IB = \eqalign{1 \over 2}I{B^2} = \eqalign{5 \over 2}\) \((cm^2)\)

\(S = {S_{CDEK}} + {S_{KFGH}} + {S_{BCKH}} \) \(+ {S_{AIB}} = 25 + 17 + 34 +\eqalign {5 \over 2} = \eqalign{{157} \over 2}\) \((cm^2)\

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 6.3 trang 165 SBT Toán 8 Tập 1 HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON