YOMEDIA
NONE

Bài tập 3.21 trang 39 SBT Toán 8 Tập 1 Kết nối tri thức - KNTT

Bài tập 3.21 trang 39 SBT Toán 8 Tập 1 Kết nối tri thức

Hai đường trung tuyến BM, CN của tam giác ABC cân tại A cắt nhau tại G. Gọi H, K lần lượt là điểm sao cho trung điểm của GH là M, trung điểm của GK là N. Chứng minh tứ giác BCHK là hình chữ nhật?

ATNETWORK

Hướng dẫn giải chi tiết Bài tập 3.21

Hai đường trung tuyến BM CN của tam giác ABC cân tại A cắt nhau tại G

Vì BM, CN là trung tuyến của ∆ABC nên M, N lần lượt là trung điểm của AC, AB.

Do M là trung điểm của AC và của GH nên AGCH là hình bình hành

Từ đó HC = AG và HC // AG. (1)

Do N là trung điểm của AB và của GK nên AGBK là hình bình hành

Suy ra KB = AG và KB // AG. (2)

Từ (1) và (2) suy ra BK = CH và BK // CH.

Tứ giác BCHK có hai cạnh đối BK, CH bằng nhau và song song nên là một hình bình hành.

Vì tam giác ABC cân tại A nên trung tuyến AG là đường cao tức AG ⊥ BC hay KB ⊥ BC, suy ra BCHK là hình chữ nhật.

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 3.21 trang 39 SBT Toán 8 Tập 1 Kết nối tri thức - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON