YOMEDIA
NONE

Bài tập 3.20 trang 39 SBT Toán 8 Tập 1 Kết nối tri thức - KNTT

Bài tập 3.20 trang 39 SBT Toán 8 Tập 1 Kết nối tri thức

Cho tam giác ABC cân tại A, AH là đường cao. Gọi M, N lần lượt là trung điểm của AB, AC. Gọi D, E lần lượt là điểm sao cho M là trung điểm của HD, N là trung điểm của HE.

a) Chứng minh AHBD, AHCE, BCED là những hình chữ nhật.

b) Tại sao giao điểm của BE và CD là trung điểm của AH?

c) Giải thích tại sao DH = HE, BE = CD.

ATNETWORK

Hướng dẫn giải chi tiết Bài tập 3.20

Cho tam giác ABC cân tại A AH là đường cao. Gọi M N lần lượt là trung điểm của AB, AC

a) • Tứ giác AHBD có M là trung điểm của AB và HD nên là hình bình hành.

Do AH là đường cao của ∆ABC nên AH ⊥ BC, suy ra AHB^=90°

Hình bình hành AHBD có AHB^=90° nên AHBD là hình chữ nhật.

• Tương tự, tứ giác AHCE có N là trung điểm của AC và HE nên là hình bình hành.

Lại có AHC^=90° nên AHCE là hình chữ nhật.

• Do AHBD, AHCE là các hình chữ nhật (chứng minh trên)

Suy ra ADB^=DBH^=HCE^=AEC^=90°

Tứ giác BCED có ADB^=DBH^=HCE^=AEC^=90° là các góc ở đỉnh nên BCED là hình chữ nhật.

b) Vì ADBH, AECH là các hình chữ nhật nên AD = BH, AE = HC, AD // BC, AE // BC

Mà ∆ABC cân tại A có AH là đường cao nên đồng thời là đường trung tuyến, do đó H là trung điểm của BC, suy ra BH = HC.

Từ đó, AD = BH = HC = AE

Tứ giác ADHC có: AD // HC, AD = HC nên ADHC là hình bình hành.

Tứ giác ABHE có: AE // BH, AE = BH nên ABHE là hình bình hành

Vì ADHC là hình bình hành nên CD cắt AH tại trung điểm của AH.

Vì AEHB là hình bình hành nên BE cắt AH tại trung điểm của AH.

Vậy giao điểm của BE và CD là trung điểm của AH.

c) Do AHBD, AHCE là các hình chữ nhật nên AB = DH, AC = HE (hai đường chéo bằng nhau).

Mà AB = AC (do ∆ABC cân tại A) nên DH = HE.

Do BCED là hình chữ nhật (chứng minh câu a) nên CD = BE (hai đường chéo bằng nhau).

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 3.20 trang 39 SBT Toán 8 Tập 1 Kết nối tri thức - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON