Bài tập 46 trang 23 SBT Toán 11 Tập 1 Cánh diều
Từ đồ thị hàm số \(y = \sin x\), tìm:
a) Các giá trị của \(x\) để \(\sin x = \frac{1}{2}\).
b) Các khoảng giá trị của \(x\) để hàm số \(y = \sin x\) nhận giá trị dương.
Hướng dẫn giải chi tiết Bài tập 46
a) Ta có hình vẽ sau:
Từ hình vẽ, ta thấy giá trị của \(x\) để \(\sin x = \frac{1}{2}\) là hoành độ giao điểm của đường thẳng \(y = \frac{1}{2}\) với đồ thị hàm số \(y = \sin x\).
Dựa vào hình vẽ trên, ta thấy \(\sin x = \frac{1}{2}\) khi \(x = \frac{\pi }{6} + k2\pi \) (các giao điểm màu đỏ) và \(x = \frac{{5\pi }}{6} + k2\pi \) (các giao điểm màu đen), với \(k \in \mathbb{Z}\).
b) Ta thấy phần đồ thị nằm phía trên trục hoành là những giá trị dương của hàm số \(y = \sin x\).
Dựa vào hình vẽ dưới đây, ta thấy hàm số \(y = \sin x\) nhận giá trị dương khi \(x \in \left( {k2\pi ;\pi + k2\pi } \right)\).
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.