YOMEDIA
NONE

Bài tập 27 trang 74 SBT Toán 11 Tập 2 Cánh diều - CD

Bài tập 27 trang 74 SBT Toán 11 Tập 2 Cánh diều

Một tài xế đang lái xe ô tô, ngay khi phát hiện có vật cản phía trước đã phanh gấp lại nhưng vẫn xảy ra va chạm, chiếc ô tô để lại vết trượt dài 20,4 m (được tính từ lúc bắt đầu đạp phanh đến khi xảy ra va chạm). Trong quá trình đạp phanh, ô tô chuyển động theo phương trình \(s\left( t \right){\rm{ }} = {\rm{ }}20t - \frac{5}{2}{t^2},\)trong đó \(s\left( {\rm{m}} \right)\) là độ dài quãng đường đi được sau khi phanh, \(t\left( s \right)\) là thời gian tính từ lúc bắt đầu phanh \(\left( {0 \le t \le 4} \right).\)

a) Tính vận tốc tức thời của ô tô ngay khi đạp phanh. Hãy cho biết xe ô tô trên có chạy quá tốc độ hay không, biết tốc độ giới hạn cho phép là 70 km/h?

b) Tính vận tốc tức thời của ô tô ngay khi xảy ra va chạm?

ATNETWORK

Hướng dẫn giải chi tiết Bài tập 27

Vận tốc tức thời của ô tô tại thời điểm \(t\) là: \(v\left( t \right) = s'\left( t \right) = 20 - 5t.\)

a) Vận tốc tức thời của ô tô ngay khi đạp phanh là vận tốc tức thời của ô tô tại thời điểm \(t = 0\):

\(v\left( 0 \right) = s'\left( 0 \right) = 20 - 5.0 = 20\left( {{\rm{m/s}}} \right) = 72\left( {{\rm{km/h}}} \right).\)

Tốc độ giới hạn cho phép là 70 km/h nên xe ô tô trên đã chạy quá tốc độ.

b) Khi xảy ra va chạm, ta có phương trình:

\(20t - \frac{5}{2}{t^2} = 20,4 \Leftrightarrow - \frac{5}{2}{t^2} + 20t - 20,4 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1,2\left( {\rm{s}} \right)\\t = 6,8\left( {\rm{s}} \right)\end{array} \right.\)

Do \(0 \le t \le 4\) nên \(t = 1,2\left( {\rm{s}} \right).\)

Vận tốc tức thời của ô tô ngay khi xảy ra va chạm:

\(v\left( {1,2} \right) = s'\left( {1,2} \right) = 20 - 5.1,2 = 14\left( {{\rm{m/s}}} \right).\)

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 27 trang 74 SBT Toán 11 Tập 2 Cánh diều - CD HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON