AMBIENT

Tính vận tốc trung bình trên cả quãng đường theo V1,V2,V3 ?

bởi Bình Nguyen 21/09/2018

1 người đi nửa quãng đường đầu với V1. Nửa thời gian còn lại với V2 và cuối cùng đi với V3. Tính vận tốc trung bình trên cả quãng đường theo V1,V2,V3

ADSENSE

Câu trả lời (1)

  • Tự tóm tắt nha!

    Thời gian người đó đi trên nửa đoạn đường đầu là:

    Từ công thức \(v=\dfrac{s}{t}\) \(\Rightarrow t_1=\dfrac{s_1}{v_1}=\dfrac{1}{2}.\dfrac{s}{v_2}\left(h\right)\)

    Thời gian người đó đi trong chặng thứ 2 và chặng thứ 3 lần lượt là:

    \(\left\{{}\begin{matrix}t_2=\dfrac{s_2}{v_2}\left(h\right)\\t_3=\dfrac{s_3}{v_3}\left(h\right)\end{matrix}\right.\)

    Theo bài ra ta có:

    \(t_2=t_3=\dfrac{s_2}{v_2}=\dfrac{s_3}{v_3}=\dfrac{s_2+s_3}{v_2+v_3}=\dfrac{1}{2}.\dfrac{s}{v_2+v_3}\left(h\right)\)

    (Áp dụng tính chất của dãy tỉ số bằng nhau)

    Vận tốc trung bình của người đó trên cả quãng đường là:

    \(v_{tb}=\dfrac{s}{t}=\dfrac{s_1+s_2+s_3}{t_1+t_2+t_3}=\dfrac{\dfrac{1}{2}s+\dfrac{1}{2}s}{\dfrac{1}{2}.\dfrac{s}{v_1}+2.\dfrac{1}{2}.\dfrac{s}{v_2+v_3}}\)

    \(=\dfrac{s}{\dfrac{s}{2v_1}+\dfrac{s}{v_2+v_3}}=\dfrac{s}{\dfrac{s\left(v_2+v_3\right)+2sv_1}{2v_1\left(v_2+v_3\right)}}\)

    \(=\dfrac{s}{\dfrac{s\left(v_2+v_3+2v_1\right)}{2v_1\left(v_2+v_3\right)}}=\dfrac{2v_1\left(v_2+v_3\right)}{2v_1+v_2+v_3}\)

    Vậy.............

    Chúc bạn học tốt!!!

    bởi Trịnh THuận 21/09/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Mời gia nhập Biệt đội Ninja247

Gửi câu trả lời Hủy

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

Các câu hỏi có liên quan

AMBIENT
?>