YOMEDIA
NONE

Tính 1.2.3+2.3.4+3.4.5+.....+2013.2014.2015

Bài 1. Tính: \(1.2.3+2.3.4+3.4.5+.....+2013.2014.2015\)

Bài 2. Cho đa thức \(M=\left(a^2+b^2-c^2\right)^2-4a^2b^2\)
a) Phân tích đa thức ra nhân tử
b) Chứng minh rằng nếu a, b, c là số đo các cạnh của tam giác thì M < 0.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Bài 1.

    Đặt \(A=1.2.3+2.3.4+3.4.5+...+2013.2014.2015\)

    \(4A=1.2.3.\left(4-0\right)+2.3.4.\left(5-1\right)+3.4.5.\left(6-2\right)+...+2013.2014.2015.\left(2016-2012\right)\)

    \(=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+2013.2014.2015.2016-2012.2013.2014.2015\)

    \(=2013.2014.2015.2016\)

    Bài 2.

    a) \(M=\left(a^2+b^2-c^2\right)^2-4a^2b^2\)

    \(=\left(a^2+b^2-c^2\right)^2-\left(2ab\right)^2\)

    \(=\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)\)

    \(=\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]\)

    \(=\left(a-b-c\right)\left(a+b-c\right)\)

    b) Ta có: a, b, c là số đo các cạnh của tam giác

    \(\Leftrightarrow\left\{{}\begin{matrix}a+b>c\\b+c>a\\c+a>b\end{matrix}\right.\) (*)

    \(M=\left(a-b-c\right)\left(a+b-c\right)=\left[a-\left(b+c\right)\right]\left(a+b-c\right)\)

    Kết hợp với (*) \(\Rightarrow M< 0\) (đpcm)

      bởi Dương Thu 26/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON