ON
YOMEDIA
VIDEO

Chứng minh n^4+2n^3-n^2-2n chia hết cho 24

CMR với mọi n thuộc Z thì \(n^4+2n^3-n^2-2n\) chia hết cho 24

Theo dõi Vi phạm
YOMEDIA

Trả lời (1)

 
 
 
  • \(n^4+2n^3-n^2-2n=n^3\left(n+2\right)-n\left(n+2\right)=n\left(n+2\right)\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

    Trong \(4\) số tự nhiên liên tiếp có \(2\) số chẵn liên tiếp
    Trong hai số chẵn liên tiếp có :
    +) Một số chẵn chia hết cho \(2\)
    +) Một số chẵn chia hết cho \(4\)

    Nên tích \(2\) số chẵn liên tiếp chia hết cho \(8\)
    Hay tích \(4\) số tự nhiên liên tiếp chia hết cho \(8\)
    Ta cũng có : Tích \(3\) số tự nhiên chia hết cho \(3\)
    Hay tích \(4\) số tự nhiên liên tiếp chia hết cho \(3\)
    Vậy tích \(4\) số tự nhiên liên tiếp chia hết cho \(3\)

    Vậy tích \(4\) số tự nhiên liên tiếp chia hết cho \(24\left(=8.3\right)\)

    Hay \(n^4+2n^3-n^2-2n⋮24\forall n\in Z\)

     

     
      bởi Dương Khánh Linh 30/04/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
YOMEDIA

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

Các câu hỏi có liên quan

 

YOMEDIA
1=>1