ON
YOMEDIA
VIDEO_3D

Chứng minh 1/1+a^2+1/1+b^2>=1/1+ab

cho a,b\(\ge\)1 chứng minh\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{1}{1+ab}\)

Theo dõi Vi phạm
ADSENSE

Trả lời (1)

 
 
 
  • Lời giải:

    Đề bài phải sửa lại là \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}\) em nhé.

    Sử dụng pp biến đổi tương đương. Ta có:

    \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}\)

    \(\Leftrightarrow \frac{b^2+1+a^2+1}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)

    \(\Leftrightarrow (ab+1)(a^2+b^2+2)\geq 2(a^2b^2+a^2+b^2+1)\)

    \(\Leftrightarrow ab(a^2+b^2)+2ab\geq 2a^2b^2+a^2+b^2\)

    \(\Leftrightarrow ab(a^2+b^2-2ab)+2ab-a^2-b^2\geq 0\)

    \(\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0\)

    \(\Leftrightarrow (ab-1)(a-b)^2\geq 0\)

    BĐT trên luôn đúng vì \(a,b\geq 1\rightarrow ab-1\geq 0\) và \((a-b)^2\geq 0\) )

    Ta có đpcm.

    Dấu bằng xảy ra khi \(a=b\) hoặc \(ab=1\)

      bởi Nguyễn Văn Duy 26/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
AMBIENT

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

MGID

Các câu hỏi mới

 

AMBIENT
1=>1
Array
(
    [0] => Array
        (
            [banner_bg] => 
            [banner_picture] => 894_1634779022.jpg
            [banner_picture2] => 
            [banner_picture3] => 
            [banner_picture4] => 
            [banner_picture5] => 
            [banner_link] => https://kids.hoc247.vn/tieuhoc247
            [banner_startdate] => 2021-09-01 00:00:00
            [banner_enddate] => 2021-10-31 23:59:59
            [banner_embed] => 
            [banner_date] => 
            [banner_time] => 
        )

)