YOMEDIA
NONE
  • Câu hỏi:

    Trong hình dưới đây, độ dài đoạn thẳng \({\rm{A'C'}}\) mô tả chiều cao của một cái cây, đoạn thẳng \({\rm{AC}}\) mô tả chiều cao của một cái cọc (cây và cọc cùng vuông góc với đường thẳng đi qua ba điểm \(\left. {A',A,B} \right)\). Giả sử \(AC = 2{\rm{\;m}},AB = 1,5{\rm{\;m}},A'B = 4,5{\rm{\;m}}\). Tính chiều cao của cây?

    • A. \(1,5{\rm{\;m}}\)
    • B. \(6{\rm{\;m}}\)
    • C. \(7{\rm{\;m}}\)
    • D. \(5{\rm{\;m}}\)

    Lời giải tham khảo:

    Đáp án đúng: B

    Ta có \(\left. {\begin{array}{*{20}{c}}{AC \bot A'B}\\{A'C' \bot A'B}\end{array}} \right\}\) nên \(AC\parallel A'C'\)

    Xét \(\Delta ABA'\) với \(AC\parallel A'C'\) có: \(\frac{{AC}}{{A'C'}} = \frac{{BA}}{{BA'}}\) (Hệ quả của định lí Thales) hay \(\frac{2}{{A'C'}} = \frac{{1,5}}{{4,5}}\) suy ra \(A'C' = \frac{{2.4,5}}{{2,5}} = 6\left( {{\rm{\;m}}} \right)\)

    Vậy cây cao 6m.

    Đáp án B.

    ATNETWORK

Mã câu hỏi: 470361

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON