YOMEDIA
NONE
  • Câu hỏi:

    Một ao sen có dạng hình thang \(ABCD\left( {AB//CD} \right)\) với \(AB = 35{\rm{\;m}},CD = 56{\rm{\;m}}\). Người ta chọn một vị trí \(E\) ở trên bờ \({\rm{AD}}\) sao cho \(AE = \frac{3}{4}ED\) và bắc một cây cầu \({\rm{EF}}\) song song với hai bờ \(AB,CD\left( {F \in BC} \right)\). Để mọi người có thể đi trên cầu buổi tối ngắm sen, người ta căng đèn trang trí dọc theo cây cầu đó với khoảng cách giữa hai chiếc đèn liên tiếp là \(2{\rm{\;m}}\) và cả hai đầu cầu đều có đèn. Tính số tiền cần dùng để mua đèn trang trí cho cây cầu đó, biết giá mỗi chiếc đèn là 15000 đồng.

    • A. 345000 đồng
    • B. 330000 đồng
    • C. 300000 đồng
    • D. 310000 đồng

    Lời giải tham khảo:

    Đáp án đúng: A

    Gọi \(M\) là giao điểm của \({\rm{AC}}\) và \({\rm{EF}}\).

    Vì \(AE = \frac{3}{4}ED\) nên \(\frac{{AE}}{3} = \frac{{ED}}{4} = \frac{{AE + ED}}{{3 + 4}} = \frac{{AD}}{7}\) suy ra \(\frac{{AE}}{{AD}} = \frac{3}{7};\frac{{ED}}{{AD}} = \frac{4}{7}\)

    Xét \(\Delta ACD,ME//CD\) suy ra \(\frac{{AE}}{{AD}} = \frac{{EM}}{{CD}}\) (hệ quả của định lí Thales)  nên \(\frac{{ME}}{{56}} = \frac{3}{7}\) hay \(ME = 24{\rm{\;m}}\).

    \(\frac{{MC}}{{AC}} = \frac{{DE}}{{DA}}\) (định lí Thales) (1)

    Xét \(\Delta ABC,MF//AB\) nên \(\frac{{MC}}{{AC}} = \frac{{MF}}{{AB}}\) (định lí Thales) (2)

    Từ (1), (2) suy ra \(\frac{{MF}}{{AB}} = \frac{{DE}}{{DA}}\) hay \(\frac{{MF}}{{35}} = \frac{4}{7}\) suy ra \(MF = 20{\rm{\;m}}\).

    Ta có \(EF = ME + MF = 24 + 20 = 44\left( {{\rm{\;m}}} \right)\).

    Số chiếc đèn cần dùng để trang trí dọc theo cây cầu EF là: \(\left( {44:2} \right) + 1 = 23\).

    Số tiền cần dùng để mua đèn trang trí cho cây cầu đó là: \(15000.23 = 345000\) (đồng).

    Đáp án A.

    ATNETWORK

Mã câu hỏi: 470442

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON