-
Câu hỏi:
Đội thanh niên xung kích của một trường phổ thông có 12 học sinh gồm 5 học sinh lớp A, 4 học sinh lớp B và 3 học sinh lớp C. Cần chọn 4 học sinh đi làm nhiệm vụ sao cho 4 học sinh này không thuộc quá 2 trong 3 lớp trên. Hỏi có bao nhiêu cách chọn như vậy:
- A. 4123
- B. 3452
- C. 225
- D. 446
Lời giải tham khảo:
Đáp án đúng: C
Gọi A là tập hợp cách chọn 4 học sinh trong 12 học sinh.
Gọi B là tập hợp cách chọn 4 số học sinh mà mỗi lớp có ít nhất một em.
Gọi C là tập hợp cách chọn thỏa mãn yêu cầu đề bài.
Khi đó \(A = B \cup C;B \cap C = \emptyset .\)
Theo quy tắc cộng ta có: \(n\left( A \right) = n\left( B \right) + n\left( C \right) \Rightarrow n\left( C \right) = n\left( A \right) - n\left( B \right)\)
Ta có \(n\left( A \right) = C_{12}^4 = 495\)
Để tính n(B), ta nhận thấy sẽ chọn mỗi lớp 2 học sinh, còn 2 lớp còn lại mỗi lớp 1 học sinh.
Vì thế theo quy tắc cộng và phép nhân, ta có
\(n\left( B \right) \)\(= C_5^2C_4^1C_3^1 + C_5^1C_4^2C_3^1 + C_5^1C_4^1C_3^2 \)
\(= 120 + 90 + 60 = 270\)
\( \Rightarrow n\left( C \right) = n\left( A \right) - n\left( B \right) = 495 - 270 = 225\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Với những giá trị nào của \(x\) thì giá trị của các hàm số tương ứng sau bằng nhau \(y = \tan 3x\) và \(\tan (\dfrac{\pi }{3} - 2x)\)
- Tìm m để phương trình \(\dfrac{{\cos x + 2\sin x + 3}}{{2\cos x - \sin x + 4}} = m\) có nghiệm.
- Tìm nghiệm của phương trình \(\sin x + \sqrt 3 \cos x = \sqrt 2\).
- Chọn mệnh đề đúng
- Tìm nghiệm dương bé nhất của phương trình \(2{\sin ^2}x + 5\sin x - 3 = 0\)
- Hàm số nào sau đây có đồ thị không là đường hình sin?
- Tìm tập xác định của hàm số\(y = f(x) = 2\cot (2x - \dfrac{\pi }{3}) + 1\)
- Tìm nghiệm của phương trình \(\tan (x - \dfrac{\pi }{2}) = \sqrt 3 \)
- Tìm tập nghiệm của phương trình \(\cos 3x = - 1\)
- Trong các hàm số sau, hàm số nào là hàm số chẵn.
- Cho các chữ số 1, 2, 3, …,9. Có thể lập được bao nhiêu số chẵn gồm 4 chữ số khác nhau và không vượt quá 2011
- Trong khai triển \({\left( {2x - 1} \right)^{10}}\). Tìm hệ số của số hạng chứa \({x^8}\)
- Một liên đoàn bóng đá có 10 đội, mỗi đội phải đá 4 trận với mỗi đội khác, 2 trận sân nhà và 2 trận sân khách. Số trận đấu được sắp xếp là:
- Một hộp đựng 4 bi xanh và 6 bi đỏ. Lần lượt rút 2 viên bi. Xác suất để rút được một bi xanh và 1 bi đỏ là:
- Có 3 học sinh nữ và 2 học sinh nam. Ta muốn sắp xếp vào một bàn dài có 5 ghế ngồi. Hỏi có bao nhiêu cách sắp xếp để 2 học sinh nam ngồi kề nhau:
- Tìm số cách chọn
- Rút một lá bài từ bộ bài gồm 52 lá. Xác suất để được lá 10 hay lá át là
- Có bao nhiêu cách chọn ra một bó hoa gồm 7 bông biết các bông hoa được chọn tùy ý
- Có bao nhiêu cách lập một nhóm đồng ca gồm 8 người, biết rằng nhóm đó có ít nhất 3 nữ
- Có thể lập được bao nhiêu chữ số có 4 chữ số khác nhau và chia hết cho 3
- Tìm ảnh của đường tròn \(\left( C \right):{\left( {x - 2} \right)^2} + {\left( {y + 5} \right)^2} = 5\) qua phép quay \({Q_{\left( {O,{{180}^0}} \right)}}\)
- Phép tịnh tiến theo \(\vec v\left( {3; - 2} \right)\) biến (C) thành đường tròn nào?
- Giả sử phép dời hình \(f\) biến tam giác \(ABC\) thành tam giác A’B’C’.
- Phép vị tự nào sau đây biến \(\Delta ABC\) thành \(\Delta NPM\)?
- Phép vị tự tâm O tỉ số \(k = \sqrt 2 \) biến điểm M thành điểm \(M'\) có tọa độ là?
- Ảnh của tam giác COD qua phép tịnh tiến theo véctơ \(\overrightarrow {BA} \) là
- Tính giá trị k
- Chọn khẳng định sai
- Phép quay tâm O góc \({120^0}\)biến tam giác AOE thành tam giác nào?
- Tính chất nào sau đây không phải là tính chất của phép dời hình?