YOMEDIA
NONE
  • Câu hỏi:

    Tìm điều kiện của x để phân thức \(M=\frac{3 x^{2}+3}{x^{4}+2 x^{3}+7 x^{2}+2 x+6} \text {. }\) đạt giá trị lớn nhất.

    • A. x=-1
    • B. x=3
    • C. x=2
    • D. x=5

    Lời giải tham khảo:

    Đáp án đúng: A

     \(\begin{aligned} &\text { Ta có } M=\frac{3 x^{2}+3}{x^{4}+2 x^{3}+7 x^{2}+2 x+6}\\ &M=\frac{3 x^{2}+3}{x^{4}+x^{2}+2 x^{3}+2 x+6 x^{2}+6}\\ &M=\frac{3 x^{2}+3}{\left(x^{2}+1\right)\left(x^{2}+2 x+6\right)}=\frac{3}{x^{2}+2 x+6} \end{aligned} \)

    \(\begin{aligned} &\text { Ta có } x^{2}+2 x+6=x^2+2x+1+5=(x+1)^2+5 \geq 5 \Rightarrow \frac{3}{x^{2}+2 x+6} \leq \frac{3}{5} \text {. }\\ &\text { Dấu bằng xảy ra } \Leftrightarrow x=-1 \text {. Vậy giá trị lớn nhất của phân thức là } \mathrm{M}=\frac{3}{5} \text { khi } \mathrm{x}=-1 \text {. } \end{aligned} \)

    ATNETWORK

Mã câu hỏi: 324695

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON